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Abstract

When dealing with real systems, it is unrealistic to
suppose that observations can be totally ordered ac-
cording to their emission dates. The partially or-
dered observations and the system are thus both
represented as finite-state machines (or automata)
and the diagnosis formally defined as the synchro-
nized composition of the model with the observa-
tions. The problem we deal with in this paper is
that, taking into account partially ordered observa-
tions rather than sequential ones, it becomes diffi-
cult to consider the observations one after the other
and to incrementally compute the global diagnosis.

In this paper, we rely on alicing of the observa-
tion automaton and propose to compute diagnosis
slices (for each observation slice) before combin-
ing them to get the global diagnosis. In order to
reach this objective, we introduce the concept of
automata chairand define the computation of the
diagnosis using this chain, first in a modular way
and then, more efficiently, in an incremental way.
These results are then extended to the case where
observations are sliced according to temporal win-
dows. This study is done in an off-line context. Itis

a first and necessary step before considering the on-
line context which is discussed in the conclusion.
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A problem that can be encountered is the size of the ob-
servation automaton, due to the temporal uncertaintiee®n t
observations or/and the duration of the observation réiegrd
For instance, we may want to compute an a posteriori diag-
nosis from log files of observations during a few days period,
as in the domain of telecommunication networks. In this ar-
ticle, we propose a way to avoid this global computation by
slicing the observations automaton and building the diagno
incrementally on successive observation slices. The probl
of building the sliced observation automata is not consider
in this paper where we consider it as given.

It should also be clear that this proposal is complemen-
tary of a decentralized approach. In the decentralized, case
as for instancéPencolé and Cordier, 20D)5nstead of glob-
ally considering the system model, diagnoses are computed
locally for each component before being merged to get the
global diagnosis. In our paper, instead of globally conside
ing the observations, diagnoses are computed for each-obser
vation window, before being incrementally integrated td ge
the current global diagnosis.

After a brief reminder of the definitions about automata
(section 2), we introduce, in section 3, the conceptof
tomata chainto represent an automaton by a sequence of au-
tomata slices. We provide the properties such an automata
chain has to satisfy to be eorrect slicingand define a
reconstructionoperation to get the global automaton back.
Then, we demonstrate, provided the observations are cor-
rectly sliced, that the diagnosis can be correctly (sectipn
and incrementally (section 5) computed from the obsermatio

1 Introduction slices. In section 6, these results are extended to the case

It is established that diagnosing dynamical systems, repwhere observations are sliced according to time, i.e agegrd
resented as discrete-event systdi@assandras and Lafor- {0 temporal windowsWe here focus on the off-line diagno-
tune, 1999 amounts to finding what happened to the sys-SIS context; the extension to the on-line diagnosis coriext
tem from existing observatiod8aroniet al, 1999; Cordier  discussed in the conclusion.

and Thiébaux, 1994; Barrat al., 2000; Consolet al., 2000;

Lunze, .1_999. In this context, the diagnostic task consists ino  preliminaries: automata and trajectories
determining the trajectories (a sequence of states andsjven

compatible with the observations. When dealing with realln this paper, we are more particularly interested in diagno
systems, it is unrealistic to suppose that observationdean ing reactive systems. Reactive systems are event-driiea si
totally ordered according to their emission dates. The partheir behaviour evolves with the occurrence of events and ca
tially ordered observations and the system are thus both regause by propagation a succession of state chdBgesniet
resented as finite-state machines (or automata) and the diagl., 1999. In this approach, the behavioural model of the sys-
nosis formally defined as the synchronized composition®f thtem is represented by finite state machines. This sectian thu
model with the observations. recalls some basic notions about automata and trajectories



Definition 1 (Automaton) An automator is defined by the correct slicing property is satisfied. A synchronizatior op
t-uplet(Q, E, T, I, F) where: eration on automata chains is then defined and properties are
e Qis the finite set of states: given which show that automata synchronization can be com-
) o ' puted on automata chains. This point is used in section 4 to
e F is the finite set of events; define diagnosis by slices.
e T C (Q x 2F x Q) is the finite set of transitions. A .An automata chain en_ables to slice an automaton into
transitiont is a 3-uplet(q, [, ¢') such thatt connects; pieces. An automata chain is a sequence of automata whose

to ¢’ on the label, with I C E a subset of events. When main property (second bullet) is that a state is not alloveed t

q # ¢ thenl must be not empty. However, we considerappear in two distinct automata of the chain, except if it is
that, Vg € Q, the implicit transition(q, 0, ¢) exists and @ frontier state between two successive automaat is a

belongs tdl". final state of the former and an initial state of the later. Con
: - - . sequently, if a state belongs to tith automaton and also to
* Tisthe finite set of initial stated (€ Q); the jth automaton, witly > 14, it appears in all the automata

e [ is the finite set of final state$'(C Q). between théth and thejth as a frontier state.
Definition 2 (Path) A path between the stateg and Definition 5 (Automata chain) A sequence of automata
¢ of an automatonA = (Q,E,T,I,F) is the couple (A',...,A") with A* = (Q% E", T, I',F') is called
((q0y---,qm),(l1,- -, 1lm)), where(qo, ..., qn) is the finite  automata chairend denoted 4, if:
sequence of states aifd, . . . , 1,,) the finite sequence of la- o Vi, j, B'=FJ,

bels,vsl_uech{(t)hat: I o Vi, j, j>i,Vq, g€ QNQI = g€ F Nge T
o T = * Vi, j,¥q,q', if {g,q'} © Q' N Q7 thenVp, path of A*

o Vie{l,...,m}, ti = (¢i-1,li,ai) € T, betweeny and¢/, p is also a path ofd?.

— — A
* =4 andqf” =47 _ _ An automata chain is given in Figure 1. To simplify, the
Definition 3 (Trajectory) A trajectory denotediraj, in an  labels over the transitions are not represented.

automatonA is a path ((qo,-.-,qm),(l1,-.-,1m)), Where

qo € I andg,, € F. e
Two automatad and A’ are equal 4 = A’) if their trajec- ™ Ho

tory sets are equal. We calmplified automatof A4, the C?\ P

automatond’ = A from which all the states and transitions ‘ I 4] 4]

not reachable from an initial state or not leading to a final @) =
state have been removed. In the following, when computing | U a
new automata, only simplified ones are considered.

) o Figure 1: Chain of three automata
Let us consider the synchronization of two automdta

and A,. If their transition labels share events, these com- ) )

mon eventsf; N E», are called synchronization events. To _ L€t€a be anautomatachainl’, ..., A"). Atrajectory of

be synchronizable, two labels andl, must include exactly €4 is defined as being the ordered (fraro n) concatenation
the same synchronization events. The synchronization,labedf 7 trajectories, one for each automaton. For instance, the
when it exists, i99(l1,15) = 1 Ul,. The synchronization path going from staté to states through the state3and5 is

consists in trigerring simultaneously the only transiighe @ trajectory of the automata chain of Fig. 1. Conversely, the
labels of which are synchronizable. path going from stat8 to 6 through5 is not a trajectory.

Definition 4 (Synchronization of automata)Given 4, —  Definition 6 (Correct slicing) Let A be an automaton and
(Q1, Br, T, I, Fy) and Ay = (Qz, Es, Ty, I, I2) two au- £4=(A,...,A") an automata chaint, is acorrect slic-
tomata. Thesynchronized automatasf A, and A», denoted "9 of A iff the set of trajectories of 4 is equal to the set of

A, ® As, is the automatonl = E.T.I.F)such that: trajectories ofA. We denoteSii(A) a correct slicing ofA
1942 (@ BT,1,F) into an automata chai&f 4 such that€ s = Sli(A).

e Q=01 XQs, o . .
The chain in Figure 1 is a correct slicing of the automaton
o E=EUE, o / of Figure 2.
o T'={((qr,2),0, (@1, 03)) | 3,12, (a1, 11, 01) € Ta A From an automata chain, it is also possible to get back an
(g2:12,¢5) € Ta Nl =0O(ly,12)}, automaton by the reconstruction operation defined below.
o I =1 x1Iy, Definiton 7  (Automaton  reconstruction) Let
o FF=1F| x Fs. Ex = (AY,...,A™) be an automata chain with
A" = (QE",T",I',F*). We call reconstructionof
3 Automata chain the chain £4, the simplified automaton obtained from

. . . . Agp = ,ERr,Tgr, Ir, Fr) defined as follows:
In this section we introduce the conceptaftomata chain & = (Qr. Br Tk, In, Fg)

. — 1
and show that this concept can be used to represent an au-* Qr=Q U...UQ",
tomaton as a sequence of automata slices, providing that ae Er = E' =... = E",



Refinement operation enables us to get a smaller equiva-
lent automata chain. After successive refinements, (two I-

*\ refinements removing states 8 and 9, and one F-refinement
removing state 7), the automata chain of Figure 3 is refined
in the chain of Figure 1.

\@ [
kel

(®

Figure 2: The automata chain of Fig. 1 is one of the correct l \
slicings of this automaton. This automaton can be obtained @H
by reconstruction of the automata chain given in Fig. 1. | Q

e Tr=T'U...UT", Figure 3: This automata chain is one of the correct slicirfgs o
o Ip=1I" the automaton of Fig. 2. When refined, this automata chain
' gives the one of Fig. 1.

o Fp=Fm,
The automaton of Figure 2 is obtained by reconstruction of
the automata chain of Figure 1. It can be shown that, an ayg
tomata chain, provided that it is a correct slicing of an au-~ = _ _
tomaton, gives back this automaton by reconstruction. Definition 9 (Prefix- and suffix-closed automator)et A =

E,T,I,F)beanautomaton.
Theorem 1. Let A be an automaton and4 an automata @, B,T.1, 4
chain. Let us denote the reconstruction oxgeratiorﬂby"l. We callprefix-closed automaton of, denotedd ™, the au-

A
If £4 is a correct slicing of4, then A is obtained by recon- tomato wh_ose all states are fin =G _

. ) 1 We callsuffix-closed automaton of, denotedA—, the au-
struction of€4, i.e A = Sli” "~ (€4).

tomatonA whose all states are initiall = = Q.
Proof: It is given in Appendix. We denoted, the automaton which is both prefix-closed

and suffix-closed{# = A+ = A= ").

It is important to remark that the automata chain of Fig-  \when synchronizing an automata chain with an automa-
ure 3 is also a correct slicing of the automaton of Figure 2ton )7, each automaton of the chain is synchronized ith
It contains states (as state 7, 8, 9) which are unnecessdry arhe only subtlety is that, except when synchronizing thé firs
discarded by the reconstruction operation during the simpl gytomaton of the chain, the initial statesf are not con-
fication step (they do not belong to any trajectory). An au-sigered. In the same way, except when synchronizing the last

tomata chain can be pruned from these unnecessary statgstomaton of the chain, the final states\éfare not consid-
without loss of information. This operation is called refine greq.

ment. It can concern initial states which do notappear ak fina_ . . ) L
states in the preceding automaton (I-refinement) or fintgsta Definition 10 (Automata chain synchronizatian)Ve call

Let us now turn to automata chain synchronization which
a key issue for defining diagnosis by slices (next section)

which do not appear as initial states in the following autema Synchronization of an automata chain = (4',..., A")
ton (F-refinement). In the following definition, the statés ~ With an automaton/ the sequence denotéd M defined
removed from the selt’ of the automaton’. %;‘?AQQM: (AlQM*, A2 QM7 , ... A" QM7 A"®

Definition 8 (I-Refinement) Let£4 = (Al,..., A") with _
Al = (Q,E', T, I', F'). We call l-refinement of 4 a se- Theorem 3. Let £4 be an automata chain anM =
quence€s = (A,...,A") such thatdg,3i > 1, ¢ € (QA,I,EA,I,TM,_IM,FA,I) an automaton, thefiy ® Misan
I' A q ¢ Fi~! with: automata chain. Moreovef, ® M is a correct slicing of
. . Sli~'(E4) ® M.
o VjAi, AT = A, FEa) el . .
A is th imolified ¢ 1 btained f The proof is not given here. This result means that the
s o ]IESz Ti ep Simp Ilﬁ automaton - obtained oM gy nchronization operation on an automaton can be performed
(@ BT 1"\ {q}, F*). on its sliced representation without loss of informatioml an
F-refinement can be defined in an analog way as Ithat the result can be recovered by reconstruction.
refinement.

Property 2. Let&, be an automata chain. The sequence of4 Diagnosis by slices

This section proposes to use the formalism of automatashain
) represent the observations and to compute, given Theo-

rem 3, the system diagnosis. The section 5 then presents how
The proof is not given here. to compute the diagnosis incrementally.

the equality of the reconstructed automata.



Let us first recall the definitions used in the domain of reconstruction
discrete-event systems diagnosis where the model of the sys

tem is traditionnally represented by an automaton. Obstervation slicing Obsehrv_ation
. automaton chain
Definition 11 (Model). The model of the systemdenoted Automaton Chain
Mod’ is an aUtomator(QMOd, E’I\/[Od7 TMod7 IM0d7 FMUd)_ synchronization J/ l synchronization
IMed s the set of possible statesit All the states of the oy MO by MOD
] d __ Mod Global reconstruction Diagnosis
system may be final, théi°? = QM°d  The set of observ- doamesis agnos

able events of the system is denakglfod C EFMed,

The model of the system describes its behaviour and the _ )
trajectories ofMod represent the evolutions of the system. Figure 4 lllustration of Result 1
Let us remark that we do not have any information on the final
states of\lod, and soMod™ = Mod and Mod™ = Mod ™. . .

5 Incremental diagnosis

Let us turn to observations and diagnosis definitions. The, ihe diagnosis by slices as presented aboveitthdiagno-
observable events are observed by sensors and sent via cogjs slice,A?, is computed independently from the others, by
munication channels to a unique supervisor. Therefore, th§ynchronizing theth observation slice from the chafhys, |
observations are subject to uncertainties: the clocks ®f thObsi with the system modelfod?. One of the interest; of

sensors are not synchronized, the transfer policy andidurat the observation slicing is to make the parallelized computa
are variable or partially unknown, some observations M&Yion of each diagnosis slice possible. In this section, veeigo

der on the observations emited by the syster. Conseduient§! 27Oter approach, which elaborates an incremental diag-
the observations are represented by an automaton, each t'){qs's’ usingA ™" to restrict the set of initial states dffod
jectory of which represents a possible order of emi’ssion ofnen _computmgw = In t_h|s section we first present a new
the observations efinition of the_s_ynchronlzauc_)n for the mcre_menta_l case a

. ' . . tackle the specific problem of incremental diagnosis.
Definition 12 (Observations) The observations denoted

Obs.,, is an automaton describing the observations emitted?€finition 15 (Restriction) Let A = (Q, E, T, F) be an
by the system during the peridfg, ¢,]. automaton. Thautomata restrictionf A by the states of’,

! H ! !
Definition 13 (Diagnosis) Thediagnosisdenoted),,, is an denotedd[I], is the automatodt’ = (@, B, T, I N I', F).
automaton describing the possible trajectories on the mode In the incremental synchronization the set of initial state
of the system compatible with the observations sent by thef an automaton of the chain is restricted by the set of final
system during the periody, ¢,,]. states of its predecessor.

The diagnosis can be formally defined as resulting fronDefinition 16 (Incremental synchronization)The incre-
the synchonization of the automaton representing the modeghental synchronizatiorof the automata chain, =
(Mod), and the automaton representing the observationg4! ... A") with the automaton\/, denoted€, ® M is
Obs,, on the periodto, t,] (see[Sampattet al, 1996). We  defined ag A’ ..., A™) with A" = (Q'i, E/,T" I", F")
have : and:

A, = Mod ® Obs, Q) PRt

Due to Theorem 3, the diagnosis can be computed by com- * A=Al M7, . . }
puting diagnosis slices, corresponding to each observatio Vi € {2,...,n—1}, A" = (A’ ® M#)[F'"~!] and
slices, giving a diagnosis automata chain. The global diagn 4 _ (A" @ M~)[F'1].
sis is then reconstructed from this diagnosis automatanchai
Definition 14 (Diagnosis by slices - Diagnosis slicel.et
Mod be the system model ari¢hs,, the observation emitted
during the periodfto, t,]. LetEpps, = (Obs',..., Obs™),
be a correct slicing ofObs,,. The synchronization (see defi-  The proofis not given.
nition 10) ofEpps,, With Mod, i.e Eops, ® Mod = (Obs' ©®  Theorem 5. Let €4 be an automata chain and
Mod, Obs? ®Mod#, ..., 0bs" ® Mod™ ) isthediagnosisby M = (Qu, Ear, Tar, Ins, Far) an automaton. We have

Property 4. Let £4 be an automata chain and/ an au-
tomaton. Therf, ® M is the automata chain obtained by
successive |-refinements®f @ M.

slicesof the system. _ . SN EA O M) = SliTH(Ea @ M).

It can be denoted by the diagnosis automata chain . .
(Al,...,A™), whereA' is called theith diagnosis slicef This theorem can be proved using Prop 2 and Prop 4.
the system.

Using Theorem 3, it can be proved that the diagnosis inOleen this new definition of synchronization, a formaliza-

slices of a system, he@oy,. @ Mod, correctly represents n of incremelzntal diagnosjs can be propqsed. Provided tha
the diagnosis computed on the global observations since tH%Obsrf = (0bs’,..., Obs") is alliclorrect slicing 00bs,, we
reconstruction of o5, ® Mod equals the global diagnosis: have:A,, = Mod ® Obs, = Sli™" (Eops,, © Mod).

—1 —_— )
Result1. A, = Mod ® Obs, = Sli™"(Eobs,, © Mod) We could conversely usA’ to restrict the set of final states of
This result is illustrated by Figure 4. Mod when computing the diagnosis®—*.



We noteVi, Eops, = (Obsl,...,Obsi), the automata The results of section 4 can be used in the case of
chain of the firsti observations automata. Lét< n, and temporally correct slicing. Let us denot€, Eops,, =
_ 1 3 H - i
Ea, = (AY,...,A’) the automata chain resulting from the (0bs™, ..., 0bs™). Leti < n, and€a,, = Eops,y O
incremental synchronization &f;s, with the system model Mod = (AW AW:). Then.& i . i -
Mod. We can incrementally comput,,, = Eous,,, © oa = ey . 1€AW, ;T CObswy,,,

Mod as follows: Mod can be computed as follows:
Result 2. Enier = (Al, LAY Ai+l) with A+l — Result 4. 5AW_1’+1 = (AW17 cen AW'L7AW1+1) with
(0bs'* @ Mod#)[Fi] where Fi is the set of final states A"+ = (Obs""' ® Mod™)[FX"] where FY" is the set
of A%, of final states ofA":,

This result comes from the fact thafod~ = Mod™ ll Let Obsyy,, the automaton provided by the reconstruction

the states inV/od are final states). Thus it is possible to com- OP€ration onops,,, . - Obsw, represents the observations
pute the automata chain that represents the diagnosisin an iemitted on the perioft, ¢;].

c;e;}nental way byfsznchgonizin.g thehone after the other eachegyt 5. LetAyy, = Sli_l(EAWi)- Then Ay, = Obsy, ®

of the automata of the observation chain. Mod is the diagnosis of the perideb, .

The automaton provided by the reconstruction operation o } ] i )
Eops. is denotedDbs;. Then: The incremental computation of diagnosis from temporal

1 windows seems promising firstly because the diagnosis gives
Result 3. LetA; = 5li™"(€a,). Then,A; = Obs; ® Mod.  then the possible states of the system at timer.t the (pos-
sibly uncertain) observations gathered at time Another

6 Temporal windows diagnosis good reason appears when turning into an on-line diagno-

It has been proved above that, at the condition to have a cofiS CONtext. The observation automata chain has now to be
rect slicing of the observation automaton, it is possiblinto ~ Puilton-line, i.e withoutknowing by advance the whole set o
crementally compute the global system diagnosis by consid2Pservations gathered on the global diagnosis window. This
ering in sequence the slices of observations and computinigPiNt is not examined in this paper but it can be shown that
for each of them its diagnosis slice. In this section, we show@King profit of temporal information, it is easier, on-lire

that this result can be instantiated to the case where the oBuild ttmporally correct slicing than only correct slicir@b-
servation automaton is sliced according to time, accortting servations, which should be considered as possible in the ge

temporal windows. Firstly, we extend the definitionaafr- €@l case, can be discarded as not satisfying the temparal co
rect slicingto temporally correct slicingy requiring tempo-  Straints collected on the system behaviour (as delays ketwe
ral properties. Then, the incremental computation is demonPPServations emission and reception; communication chan-
strated as valid on temporal windows which correctly slice€!S Politics...).

the observation automaton.

Definition 17 (Correct sequence of temporal windowdjet In this paper, we formalized the incremental computation of

e e e glagnoss fordiscreteevent systs. We nioduced and ce
P O ined the concept of automata chain that enables us to han-
[to, t,] iff it is a sequenc®V = Wy, ..., W;, ..., W, ) such dle sli fob fi d sli £ di is ratfr th
that Wi = [to, 1], Wa = [tn_1, tn], andWi = [tr1, . e slices of observations and slices of diagnosis ra
! global observations and global diagnosis. We proved theat th
Definition 18 (Temporally correct slicing) Let Obs, be  diagnosis can be computed first in a modular way and then,
the observation automaton dm, ¢,]. The automata chain more efficiently, in an incremental way, both methods using
Eovs, = (0bs™, ..., Obs") is a temporally correct slic-  the automata chain. We then presented how the results can be
ing of Obs,, according toWW = Wy, ..., W;, ..., W,) iff extended to the case where observations are sliced acgordin
R . to temporal windows.
* the §I|C|ng IS correct; ] In thF()a diagnostic literature the notion of incremental diag
e W is a correct sequence of temporal windows W.r.tposis is relatively new. It can be explained by the fact timat,
[to, tnl; most cases, observations are supposed to be totally ordered
o for each trajectory inObs"", the transitions have oc- received without delays, and without any loss. In theses;ase

cured duringt;_1, t;] (i.e the observations labelling the the problem of slicing the observations does not exist. In

7 Conclusion

transitions have been emitted by the system/ij. [Baroniet al, 1999 however, the authors examine the case
) L where observations are uncertain and represented byljyartia
It can be noted that, for any € {1,...,n}, the initial  orqered graphs. In the case of decentralized systems, Pen-

states ofObs""" are possible states &t and that the final  coléet al. [2001] consider the incremental diagnosis compu-

states ofObs"" are possible states &t Note also that, if tation applied to the on-line diagnosis for telecommundrat

a final state of a temporal window can be reached by twaetworks. The property afafe windows defined and algo-

trajectories, it is required that both trajectories haveuoed  rithms are given in the case where the temporal windows sat-

during the temporal window, i.e the final state is a possibléasfy this property. Extensions to more complicated cases ar

state int; whatever the trajectory used to get it. proposed. Compared to this work, our proposal is more gen-
eral and give a formal view of the problem which allows to



better situate the algorithmic approach proposelPiencolé Since the trajectories ol » and (A!, A?) are equalé,
etal, 2001. In[Cordier and Largouét, 200an incremental  and (4, », A%, ..., A™) have the same trajectories. We define
approach_ of diagnosis is considered from a model-checkingecursivelyvi > 2, A; ; the reconstruction of4; ;_, A).
pointof view. o ~ Then, we prove recursively th&l has the same trajectories
Our study exhibits the (non trivial) correctness propsrtie as(Ay ;, A1 .. A")in particular(A; ,) = (Ag). S0,E4
that the observation slicing, in an automata chain, hastto sagnd 4 ; have the same trajectories. &g is a correct slicing
isfy in order to guarantee the completeness of the diagnosisf A, 4 = Ap. 0
computation. This first step is then essential before censid
ing the incrementality of on-line diagnosis computation.
The next step will consider the building of the observationsReferences
automata chain in the context of off-line and then on-line di [Baroniet al, 1999 P. Baroni, G. Lamperti, P. Pogliano, and

agnosis. The case of on-line diagnosis is particularlyése

ing since the goal is to dynamically build an automata chain
without having all the observations. As seen at the end of se
tion 6, this task can take profit of temporal information kmow
on the system, even if, for complexity reasons, these tempo-
ral constraints are not encoded in the system model. Another
interesting point is to use the concept of automata chains fo

the diagnosis of reconfigurable systems.

Appendix
Proof of Theorem 1let A = (Q, £, T, I, F) be an automa-
ton and€y = (Al,..., A™) an automata chain witd’ =

(Qt, B, T, I', F*) so that€ 4 is a correct slicing ofd. Let
Ar = (Qr, ERr,Tr,Ir, Fr) be the reconstruction cf 4.
We have to prove that the set of trajectoriesbofwhich is

the same as the set of trajectoriescof) equals the set of [cordier and Largouét, 200IM.-O.

trajectories ofd ;.

Let£4,, = (A', A%). &4, , is an automata chain. Let
Ay 2 be the reconstruction @y, ,. Let us consider a transi-

tion (q,1,q") of A; 5.
Remark 1:{q,q'} C Q"' or{q,q'} C Q* (becauséq,l,q') €

Ti o =T UT?). Consequently, if a state does not belong to
Q? (resp.QY), it belongs taR* (resp.Q?) and its predecessor

too. Moreover, if a path onl; » goes from a state fror@*

to a state fromQ?, there exists at least one state on the pat

belonging toQ' N Q2.

Remark 2vj € {1,2}, {¢,¢'} C Q7 = (¢,1,¢') € T7.

i) Vtraj = ((qo,---+qm), (l1,-.-,lm)), trajectory of€4, ,,
thentraj is also a trajectory afl; » since (by definition) any
transition of A* or A? is a transition of4; 2, go € I' and
qm € F2.

i)y Vtraj = ((qoy---,am), (l1,...,1lm)), trajectory ofA; o.
Let k be the smallest value if0, ..., m} so thatg, € Q' N
Q? (k exists due to Remark).

Vi <k, ¢; € QY, sotraj' = ((qo, - - -
trajectory ofA® (cf. Remark 2).

Let us now prove thati > k, ¢; € Q%. Let us suppose
it exists j, the smallest value so thgt> &k andq; ¢ Q2.
q; € Q' and, due to Remark 4, _; € Q' N Q% For the
same reason as féf, 3/ the smallest value so that> j and
q € Ql N Q2' The patm = ((qj—la s an)7 (177 SRR ll)) is
a path ofA!. But, sinceg;_; andg are both belonging to
Q' NQ?, pis also a path ofi?. It implies thaty; is a state of
Q?, which is in contradiction with the existence pfSo,vi >
ka q; € Q2' Andtraj2 = ((q/Ca ) Qm)7 (lk-‘rla EEEE) lm)) isa
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