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Abstract

When dealing with real systems, it is unrealistic to
suppose that observations can be totally ordered ac-
cording to their emission dates. The partially or-
dered observations and the system are thus both
represented as finite-state machines (or automata)
and the diagnosis formally defined as the synchro-
nized composition of the model with the observa-
tions. The problem we deal with in this paper is
that, taking into account partially ordered observa-
tions rather than sequential ones, it becomes diffi-
cult to consider the observations one after the other
and to incrementally compute the global diagnosis.
In this paper, we rely on aslicing of the observa-
tion automaton and propose to compute diagnosis
slices (for each observation slice) before combin-
ing them to get the global diagnosis. In order to
reach this objective, we introduce the concept of
automata chainand define the computation of the
diagnosis using this chain, first in a modular way
and then, more efficiently, in an incremental way.
These results are then extended to the case where
observations are sliced according to temporal win-
dows. This study is done in an off-line context. It is
a first and necessary step before considering the on-
line context which is discussed in the conclusion.

1 Introduction
It is established that diagnosing dynamical systems, rep-
resented as discrete-event systems[Cassandras and Lafor-
tune, 1999] amounts to finding what happened to the sys-
tem from existing observations[Baroniet al., 1999; Cordier
and Thiébaux, 1994; Barralet al., 2000; Consoleet al., 2000;
Lunze, 1999]. In this context, the diagnostic task consists in
determining the trajectories (a sequence of states and events)
compatible with the observations. When dealing with real
systems, it is unrealistic to suppose that observations canbe
totally ordered according to their emission dates. The par-
tially ordered observations and the system are thus both rep-
resented as finite-state machines (or automata) and the diag-
nosis formally defined as the synchronized composition of the
model with the observations.

A problem that can be encountered is the size of the ob-
servation automaton, due to the temporal uncertainties on the
observations or/and the duration of the observation recording.
For instance, we may want to compute an a posteriori diag-
nosis from log files of observations during a few days period,
as in the domain of telecommunication networks. In this ar-
ticle, we propose a way to avoid this global computation by
slicing the observations automaton and building the diagnosis
incrementally on successive observation slices. The problem
of building the sliced observation automata is not considered
in this paper where we consider it as given.

It should also be clear that this proposal is complemen-
tary of a decentralized approach. In the decentralized case,
as for instance[Pencolé and Cordier, 2005], instead of glob-
ally considering the system model, diagnoses are computed
locally for each component before being merged to get the
global diagnosis. In our paper, instead of globally consider-
ing the observations, diagnoses are computed for each obser-
vation window, before being incrementally integrated to get
the current global diagnosis.

After a brief reminder of the definitions about automata
(section 2), we introduce, in section 3, the concept ofau-
tomata chain, to represent an automaton by a sequence of au-
tomata slices. We provide the properties such an automata
chain has to satisfy to be acorrect slicing and define a
reconstructionoperation to get the global automaton back.
Then, we demonstrate, provided the observations are cor-
rectly sliced, that the diagnosis can be correctly (section4)
and incrementally (section 5) computed from the observation
slices. In section 6, these results are extended to the case
where observations are sliced according to time, i.e according
to temporal windows. We here focus on the off-line diagno-
sis context; the extension to the on-line diagnosis contextis
discussed in the conclusion.

2 Preliminaries: automata and trajectories

In this paper, we are more particularly interested in diagnos-
ing reactive systems. Reactive systems are event-driven since
their behaviour evolves with the occurrence of events and can
cause by propagation a succession of state changes[Baroniet
al., 1999]. In this approach, the behavioural model of the sys-
tem is represented by finite state machines. This section thus
recalls some basic notions about automata and trajectories.



Definition 1 (Automaton). An automatonA is defined by the
t-uplet(Q, E, T, I, F ) where:

• Q is the finite set of states;

• E is the finite set of events;

• T ⊆ (Q × 2E × Q) is the finite set of transitions. A
transition t is a 3-uplet(q, l, q′) such thatt connectsq
to q′ on the labell, with l ⊆ E a subset of events. When
q 6= q′ thenl must be not empty. However, we consider
that,∀q ∈ Q, the implicit transition(q, ∅, q) exists and
belongs toT .

• I is the finite set of initial states (I ⊆ Q);

• F is the finite set of final states (F ⊆ Q).

Definition 2 (Path). A path between the statesq and
q′ of an automatonA = (Q, E, T, I, F ) is the couple
((q0, . . . , qm),(l1, . . . , lm)), where(q0, . . . , qm) is the finite
sequence of states and(l1, . . . , lm) the finite sequence of la-
bels, such that:
• ∀i ∈ {0, . . . , m}, qi ∈ Q,

• ∀i ∈ {1, . . . , m}, ti = (qi−1, li, qi) ∈ T ,

• q0 = q andqm = q′.

Definition 3 (Trajectory). A trajectory, denotedtraj, in an
automatonA is a path ((q0, . . . , qm),(l1, . . . , lm)), where
q0 ∈ I andqm ∈ F .

Two automataA andA′ are equal (A = A′) if their trajec-
tory sets are equal. We callsimplified automatonof A, the
automatonA′ = A from which all the states and transitions
not reachable from an initial state or not leading to a final
state have been removed. In the following, when computing
new automata, only simplified ones are considered.

Let us consider the synchronization of two automataA1

and A2. If their transition labels share events, these com-
mon events,E1 ∩ E2, are called synchronization events. To
be synchronizable, two labelsl1 andl2 must include exactly
the same synchronization events. The synchronization label,
when it exists, isΘ(l1, l2) = l1 ∪ l2. The synchronization
consists in trigerring simultaneously the only transitions the
labels of which are synchronizable.

Definition 4 (Synchronization of automata). Given A1 =
(Q1, E1, T1, I1, F1) andA2 = (Q2, E2, T2, I2, F2) two au-
tomata. Thesynchronized automatonof A1 andA2, denoted
A1 ⊗ A2, is the automatonA = (Q, E, T, I, F ) such that:

• Q = Q1 × Q2,

• E = E1 ∪ E2,

• T = {((q1, q2), l, (q
′
1, q

′
2)) | ∃l1, l2, (q1, l1, q

′
1) ∈ T1 ∧

(q2, l2, q
′
2) ∈ T2 ∧ l = Θ(l1, l2)},

• I = I1 × I2,

• F = F1 × F2.

3 Automata chain
In this section we introduce the concept ofautomata chain
and show that this concept can be used to represent an au-
tomaton as a sequence of automata slices, providing that a

correct slicing property is satisfied. A synchronization op-
eration on automata chains is then defined and properties are
given which show that automata synchronization can be com-
puted on automata chains. This point is used in section 4 to
define diagnosis by slices.

An automata chain enables to slice an automaton into
pieces. An automata chain is a sequence of automata whose
main property (second bullet) is that a state is not allowed to
appear in two distinct automata of the chain, except if it is
a frontier state between two successive automata,i.e it is a
final state of the former and an initial state of the later. Con-
sequently, if a state belongs to theith automaton and also to
thejth automaton, withj > i, it appears in all the automata
between theith and thejth as a frontier state.

Definition 5 (Automata chain). A sequence of automata
(A1, . . . , An) with Ai = (Qi, Ei, T i, Ii, F i) is called
automata chain, and denotedEA, if:
• ∀i, j, Ei = Ej ,
• ∀i, j, j > i,∀q, q ∈ Qi ∩ Qj ⇒ q ∈ F i ∧ q ∈ Ii+1,
• ∀i, j,∀q, q′, if {q, q′} ⊆ Qi ∩ Qj then∀p, path ofAi

betweenq andq′, p is also a path ofAj .

An automata chain is given in Figure 1. To simplify, the
labels over the transitions are not represented.
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Figure 1: Chain of three automata

Let EA be an automata chain(A1, . . . , An). A trajectory of
EA is defined as being the ordered (from1 to n) concatenation
of n trajectories, one for each automaton. For instance, the
path going from state1 to state6 through the states3 and5 is
a trajectory of the automata chain of Fig. 1. Conversely, the
path going from state3 to 6 through5 is not a trajectory.

Definition 6 (Correct slicing). Let A be an automaton and
EA = (A1, . . . , An) an automata chain.EA is a correct slic-
ing of A iff the set of trajectories ofEA is equal to the set of
trajectories ofA. We denoteSli(A) a correct slicing ofA
into an automata chainEA such thatEA = Sli(A).

The chain in Figure 1 is a correct slicing of the automaton
of Figure 2.

From an automata chain, it is also possible to get back an
automaton by the reconstruction operation defined below.

Definition 7 (Automaton reconstruction). Let
EA = (A1, . . . , An) be an automata chain with
Ai = (Qi, Ei, T i, Ii, F i). We call reconstructionof
the chain EA, the simplified automaton obtained from
AR = (QR, ER, TR, IR, FR) defined as follows:

• QR = Q1 ∪ . . . ∪ Qn,

• ER = E1 = . . . = En,
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Figure 2: The automata chain of Fig. 1 is one of the correct
slicings of this automaton. This automaton can be obtained
by reconstruction of the automata chain given in Fig. 1.

• TR = T 1 ∪ . . . ∪ T n,

• IR = I1,

• FR = Fn.

The automaton of Figure 2 is obtained by reconstruction of
the automata chain of Figure 1. It can be shown that, an au-
tomata chain, provided that it is a correct slicing of an au-
tomaton, gives back this automaton by reconstruction.

Theorem 1. Let A be an automaton andEA an automata
chain. Let us denote the reconstruction operation bySli−1.
If EA is a correct slicing ofA, thenA is obtained by recon-
struction ofEA, i.eA = Sli−1(EA).

Proof: It is given in Appendix.

It is important to remark that the automata chain of Fig-
ure 3 is also a correct slicing of the automaton of Figure 2.
It contains states (as state 7, 8, 9) which are unnecessary and
discarded by the reconstruction operation during the simpli-
fication step (they do not belong to any trajectory). An au-
tomata chain can be pruned from these unnecessary states
without loss of information. This operation is called refine-
ment. It can concern initial states which do not appear as final
states in the preceding automaton (I-refinement) or final states
which do not appear as initial states in the following automa-
ton (F-refinement). In the following definition, the stateq is
removed from the setIi of the automatonAi.

Definition 8 (I-Refinement). Let EA = (A1, . . . , An) with
Ai = (Qi, Ei, T i, Ii, F i). We call I-refinement ofEA a se-
quenceEA′ = (A′1, . . . , A′n) such that∃q, ∃i > 1, q ∈
Ii ∧ q /∈ F i−1 with:

• ∀j 6= i, A′j = Aj ,

• A′i is the simplified automaton obtained from
(Qi, Ei, T i, Ii \ {q}, F i).

F-refinement can be defined in an analog way as I-
refinement.

Property 2. Let EA be an automata chain. The sequence of
automataEA′ obtained by refinement ofEA is a chain. More-
over, the refinement operation on automata chain preserves
the equality of the reconstructed automata.

The proof is not given here.

Refinement operation enables us to get a smaller equiva-
lent automata chain. After successive refinements, (two I-
refinements removing states 8 and 9, and one F-refinement
removing state 7), the automata chain of Figure 3 is refined
in the chain of Figure 1.
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Figure 3: This automata chain is one of the correct slicings of
the automaton of Fig. 2. When refined, this automata chain
gives the one of Fig. 1.

Let us now turn to automata chain synchronization which
is a key issue for defining diagnosis by slices (next section).

Definition 9 (Prefix- and suffix-closed automaton). Let A =
(Q, E, T, I, F ) be an automaton.

We callprefix-closed automaton ofA, denotedA+, the au-
tomatonA whose all states are final:F+ = Q.

We callsuffix-closed automaton ofA, denotedA−, the au-
tomatonA whose all states are initial:I− = Q.

We denoteA#, the automaton which is both prefix-closed
and suffix-closed (A# = A+−

= A−
+

).

When synchronizing an automata chain with an automa-
tonM , each automaton of the chain is synchronized withM .
The only subtlety is that, except when synchronizing the first
automaton of the chain, the initial states ofM are not con-
sidered. In the same way, except when synchronizing the last
automaton of the chain, the final states ofM are not consid-
ered.

Definition 10 (Automata chain synchronization). We call
synchronization of an automata chainEA = (A1, . . . , An)
with an automatonM the sequence denotedEA ⊗ M defined
by: EA⊗M = (A1⊗M+, A2⊗M#, . . . , An−1⊗M#, An⊗
M−).

Theorem 3. Let EA be an automata chain andM =
(QM , EM , TM , IM , FM ) an automaton, thenEA ⊗ M is an
automata chain. MoreoverEA ⊗ M is a correct slicing of
Sli−1(EA) ⊗ M .

The proof is not given here. This result means that the
synchronization operation on an automaton can be performed
on its sliced representation without loss of information and
that the result can be recovered by reconstruction.

4 Diagnosis by slices
This section proposes to use the formalism of automata chains
to represent the observations and to compute, given Theo-
rem 3, the system diagnosis. The section 5 then presents how
to compute the diagnosis incrementally.



Let us first recall the definitions used in the domain of
discrete-event systems diagnosis where the model of the sys-
tem is traditionnally represented by an automaton.
Definition 11 (Model). The model of the system, denoted
Mod , is an automaton(QMod , EMod , TMod , IMod , FMod).
IMod is the set of possible states att0. All the states of the
system may be final, thenFMod = QMod . The set of observ-
able events of the system is denotedEMod

Obs
⊆ EMod .

The model of the system describes its behaviour and the
trajectories ofMod represent the evolutions of the system.
Let us remark that we do not have any information on the final
states ofMod , and soMod

+ = Mod andMod
# = Mod

−.

Let us turn to observations and diagnosis definitions. The
observable events are observed by sensors and sent via com-
munication channels to a unique supervisor. Therefore, the
observations are subject to uncertainties: the clocks of the
sensors are not synchronized, the transfer policy and duration
are variable or partially unknown, some observations may
even be lost, etc. Generally, we do not know the total or-
der on the observations emitted by the system. Consequently,
the observations are represented by an automaton, each tra-
jectory of which represents a possible order of emission of
the observations.
Definition 12 (Observations). The observations, denoted
Obsn, is an automaton describing the observations emitted
by the system during the period[t0, tn].
Definition 13 (Diagnosis). Thediagnosis, denoted∆n, is an
automaton describing the possible trajectories on the model
of the system compatible with the observations sent by the
system during the period[t0, tn].

The diagnosis can be formally defined as resulting from
the synchonization of the automaton representing the model
(Mod ), and the automaton representing the observations
Obsn on the period[t0, tn] (see[Sampathet al., 1996]). We
have :

∆n = Mod ⊗ Obsn (1)
Due to Theorem 3, the diagnosis can be computed by com-

puting diagnosis slices, corresponding to each observation
slices, giving a diagnosis automata chain. The global diagno-
sis is then reconstructed from this diagnosis automata chain.
Definition 14 (Diagnosis by slices - Diagnosis slice). Let
Mod be the system model andObsn the observation emitted
during the period[t0, tn]. Let EObsn

= (Obs
1, . . . ,Obs

n),
be a correct slicing ofObsn. The synchronization (see defi-
nition 10) ofEObsn

with Mod , i.eEObsn
⊗ Mod = (Obs

1 ⊗
Mod ,Obs

2⊗Mod
#, . . . ,Obs

n⊗Mod
−) is thediagnosis by

slicesof the system.
It can be denoted by the diagnosis automata chain

(∆1, . . . , ∆n), where∆i is called theith diagnosis sliceof
the system.

Using Theorem 3, it can be proved that the diagnosis by
slices of a system, hereEObsn

⊗ Mod , correctly represents
the diagnosis computed on the global observations since the
reconstruction ofEObsn

⊗ Mod equals the global diagnosis:

Result 1. ∆n = Mod ⊗ Obsn = Sli−1(EObsn
⊗ Mod)

This result is illustrated by Figure 4.
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Figure 4: Illustration of Result 1

5 Incremental diagnosis
In the diagnosis by slices as presented above, theith diagno-
sis slice,∆i, is computed independently from the others, by
synchronizing theith observation slice from the chainEObsn

,
Obsi, with the system modelMod

#. One of the interests of
the observation slicing is to make the parallelized computa-
tion of each diagnosis slice possible. In this section, we focus
on another approach, which elaborates an incremental diag-
nosis, using∆i−1 to restrict the set of initial states ofMod

when computing∆i 1. In this section we first present a new
definition of the synchronization for the incremental case and
tackle the specific problem of incremental diagnosis.

Definition 15 (Restriction). Let A = (Q, E, T, I, F ) be an
automaton. Theautomata restrictionof A by the states ofI ′,
denotedA[I ′], is the automatonA′ = (Q, E, T, I ∩ I ′, F ).

In the incremental synchronization the set of initial states
of an automaton of the chain is restricted by the set of final
states of its predecessor.

Definition 16 (Incremental synchronization). The incre-
mental synchronizationof the automata chainEA =
(A1, . . . , An) with the automatonM , denotedEA ⊙ M is
defined as(A′1, . . . , A′n) with A′i = (Q′i, E′, T ′i, I ′i, F ′i)
and:

• A′1 = A1 ⊗ M+,

• ∀i ∈ {2, . . . , n − 1}, A′i = (Ai ⊗ M#)[F ′i−1] and

• A′n = (An ⊗ M−)[F ′n−1].

Property 4. Let EA be an automata chain andM an au-
tomaton. ThenEA ⊙ M is the automata chain obtained by
successive I-refinements ofEA ⊗ M .

The proof is not given.

Theorem 5. Let EA be an automata chain and
M = (QM , EM , TM , IM , FM ) an automaton. We have
Sli−1(EA ⊙ M) = Sli−1(EA ⊗ M).

This theorem can be proved using Prop 2 and Prop 4.

Given this new definition of synchronization, a formaliza-
tion of incremental diagnosis can be proposed. Provided that
EObsn

= (Obs
1, . . . ,Obs

n) is a correct slicing ofObsn we
have:∆n = Mod ⊗ Obsn = Sli−1(EObsn

⊙ Mod).

1We could conversely use∆i to restrict the set of final states of
Mod when computing the diagnosis∆i−1.



We note∀i, EObsi
= (Obs

1, . . . ,Obs
i), the automata

chain of the firsti observations automata. Leti < n, and
E∆i

= (∆1, . . . , ∆i) the automata chain resulting from the
incremental synchronization ofEObsi

with the system model
Mod . We can incrementally computeE∆i+1

= EObsi+1
⊙

Mod as follows:

Result 2. E∆i+1
= (∆1, . . . , ∆i, ∆i+1) with ∆i+1 =

(Obs
i+1 ⊗ Mod

#)[F i
∆] whereF i

∆ is the set of final states
of ∆i.

This result comes from the fact thatMod
− = Mod

# (all
the states inMod are final states). Thus it is possible to com-
pute the automata chain that represents the diagnosis in an in-
cremental way by synchronizing the one after the other each
of the automata of the observation chain.

The automaton provided by the reconstruction operation on
EObsi

is denotedObsi. Then:

Result 3. Let∆i = Sli−1(E∆i
). Then,∆i = Obsi ⊗ Mod .

6 Temporal windows diagnosis
It has been proved above that, at the condition to have a cor-
rect slicing of the observation automaton, it is possible toin-
crementally compute the global system diagnosis by consid-
ering in sequence the slices of observations and computing
for each of them its diagnosis slice. In this section, we show
that this result can be instantiated to the case where the ob-
servation automaton is sliced according to time, accordingto
temporal windows. Firstly, we extend the definition ofcor-
rect slicingto temporally correct slicingby requiring tempo-
ral properties. Then, the incremental computation is demon-
strated as valid on temporal windows which correctly slice
the observation automaton.

Definition 17 (Correct sequence of temporal windows). Let
ti be time instants and[t0, tn] be the global diagnosis tempo-
ral window. A sequence of temporal windows is correct w.r.t
[t0, tn] iff it is a sequenceW = (W1, . . . ,Wi, . . . ,Wn) such
thatW1 = [t0, t1], Wn = [tn−1, tn], andWi = [ti−1, ti].

Definition 18 (Temporally correct slicing). Let Obsn be
the observation automaton on[t0, tn]. The automata chain
EObsn

= (Obs
W1 , . . . ,Obs

Wn) is a temporally correct slic-
ing ofObsn according toW = (W1, . . . ,Wi, . . . ,Wn) iff

• the slicing is correct;

• W is a correct sequence of temporal windows w.r.t
[t0, tn];

• for each trajectory inObs
Wi , the transitions have oc-

cured during[ti−1, ti] (i.e the observations labelling the
transitions have been emitted by the system inWi).

It can be noted that, for anyi ∈ {1, . . . , n}, the initial
states ofObs

Wi are possible states atti−1 and that the final
states ofObs

Wi are possible states atti. Note also that, if
a final state of a temporal window can be reached by two
trajectories, it is required that both trajectories have occured
during the temporal window, i.e the final state is a possible
state inti whatever the trajectory used to get it.

The results of section 4 can be used in the case of
temporally correct slicing. Let us denote∀i, EObsWi

=

(Obs
W1 , . . . ,Obs

Wi). Let i < n, andE∆Wi
= EObsWi

⊙

Mod = (∆W1 , . . . , ∆Wi). Then,E∆Wi+1
= EObsWi+1

⊙

Mod can be computed as follows:

Result 4. E∆Wi+1
= (∆W1 , . . . , ∆Wi , ∆Wi+1) with

∆Wi+1 = (Obs
i+1 ⊗ Mod

#)[FWi

∆ ] whereFWi

∆ is the set
of final states of∆Wi .

Let ObsWi
, the automaton provided by the reconstruction

operation onEObsWi
. ObsWi

represents the observations
emitted on the period[t0, ti].

Result 5. Let∆Wi
= Sli−1(E∆Wi

). Then,∆Wi
= ObsWi

⊗
Mod is the diagnosis of the period[t0, ti].

The incremental computation of diagnosis from temporal
windows seems promising firstly because the diagnosis gives
then the possible states of the system at timeti w.r.t the (pos-
sibly uncertain) observations gathered at timeti. Another
good reason appears when turning into an on-line diagno-
sis context. The observation automata chain has now to be
built on-line, i.e without knowing by advance the whole set of
observations gathered on the global diagnosis window. This
point is not examined in this paper but it can be shown that
taking profit of temporal information, it is easier, on-line, to
build temporally correct slicing than only correct slicing. Ob-
servations, which should be considered as possible in the gen-
eral case, can be discarded as not satisfying the temporal con-
straints collected on the system behaviour (as delays between
observations emission and reception; communication chan-
nels politics. . . ).

7 Conclusion
In this paper, we formalized the incremental computation of
diagnosis for discrete-event systems. We introduced and de-
fined the concept of automata chain that enables us to han-
dle slices of observations and slices of diagnosis rather than
global observations and global diagnosis. We proved that the
diagnosis can be computed first in a modular way and then,
more efficiently, in an incremental way, both methods using
the automata chain. We then presented how the results can be
extended to the case where observations are sliced according
to temporal windows.

In the diagnostic literature the notion of incremental diag-
nosis is relatively new. It can be explained by the fact that,in
most cases, observations are supposed to be totally ordered,
received without delays, and without any loss. In these cases,
the problem of slicing the observations does not exist. In
[Baroniet al., 1999] however, the authors examine the case
where observations are uncertain and represented by partially
ordered graphs. In the case of decentralized systems, Pen-
coléet al. [2001] consider the incremental diagnosis compu-
tation applied to the on-line diagnosis for telecommunication
networks. The property ofsafe windowis defined and algo-
rithms are given in the case where the temporal windows sat-
isfy this property. Extensions to more complicated cases are
proposed. Compared to this work, our proposal is more gen-
eral and give a formal view of the problem which allows to



better situate the algorithmic approach proposed in[Pencolé
et al., 2001]. In [Cordier and Largouët, 2001] an incremental
approach of diagnosis is considered from a model-checking
point of view.

Our study exhibits the (non trivial) correctness properties
that the observation slicing, in an automata chain, has to sat-
isfy in order to guarantee the completeness of the diagnosis
computation. This first step is then essential before consider-
ing the incrementality of on-line diagnosis computation.

The next step will consider the building of the observations
automata chain in the context of off-line and then on-line di-
agnosis. The case of on-line diagnosis is particularly interest-
ing since the goal is to dynamically build an automata chain
without having all the observations. As seen at the end of sec-
tion 6, this task can take profit of temporal information known
on the system, even if, for complexity reasons, these tempo-
ral constraints are not encoded in the system model. Another
interesting point is to use the concept of automata chains for
the diagnosis of reconfigurable systems.

Appendix
Proof of Theorem 1.Let A = (Q, E, T, I, F ) be an automa-
ton andEA = (A1, . . . , An) an automata chain withAi =
(Qi, Ei, T i, Ii, F i) so thatEA is a correct slicing ofA. Let
AR = (QR, ER, TR, IR, FR) be the reconstruction ofEA.
We have to prove that the set of trajectories ofA (which is
the same as the set of trajectories ofEA) equals the set of
trajectories ofAR.

Let EA1,2
= (A1, A2). EA1,2

is an automata chain. Let
A1,2 be the reconstruction ofEA1,2

. Let us consider a transi-
tion (q, l, q′) of A1,2.
Remark 1:{q, q′} ⊆ Q1 or {q, q′} ⊆ Q2 (because(q, l, q′) ∈
T1,2 = T 1 ∪ T 2). Consequently, if a state does not belong to
Q2 (resp.Q1), it belongs toQ1 (resp.Q2) and its predecessor
too. Moreover, if a path onA1,2 goes from a state fromQ1

to a state fromQ2, there exists at least one state on the path
belonging toQ1 ∩ Q2.
Remark 2:∀j ∈ {1, 2}, {q, q′} ⊆ Qj ⇒ (q, l, q′) ∈ T j.
i) ∀traj = ((q0, . . . , qm), (l1, . . . , lm)), trajectory ofEA1,2

,
thentraj is also a trajectory ofA1,2 since (by definition) any
transition ofA1 or A2 is a transition ofA1,2, q0 ∈ I1 and
qm ∈ F 2.
ii) ∀traj = ((q0, . . . , qm), (l1, . . . , lm)), trajectory ofA1,2.
Let k be the smallest value in{0, . . . , m} so thatqk ∈ Q1 ∩
Q2 (k exists due to Remark1).
∀i ≤ k, qi ∈ Q1, sotraj1 = ((q0, . . . , qk), (l1, . . . , lk)) is a
trajectory ofA1 (cf. Remark 2).
Let us now prove that∀i > k, qi ∈ Q2. Let us suppose
it exists j, the smallest value so thatj > k andqj /∈ Q2.
qj ∈ Q1 and, due to Remark 1,qj−1 ∈ Q1 ∩ Q2. For the
same reason as fork, ∃l the smallest value so thatl > j and
ql ∈ Q1 ∩ Q2. The pathp = ((qj−1, . . . , ql), (lj , . . . , ll)) is
a path ofA1. But, sinceqj−1 andql are both belonging to
Q1 ∩Q2, p is also a path ofA2. It implies thatqj is a state of
Q2, which is in contradiction with the existence ofj. So,∀i >
k, qi ∈ Q2. And traj2 = ((qk, . . . , qm), (lk+1, . . . , lm)) is a
trajectory ofA2. traj is built by reconstruction oftraj1 and
traj2. It is then a trajectory ofEA1,2

.

Since the trajectories ofA1,2 and(A1, A2) are equal,EA

and(A1,2, A
3, . . . , An) have the same trajectories. We define

recursively∀i > 2, A1,i the reconstruction of(A1,i−1, A
i).

Then, we prove recursively thatEA has the same trajectories
as(A1,i, A

i+1, . . . , An) in particular(A1,n) = (AR). So,EA

andAR have the same trajectories. AsEA is a correct slicing
of A, A = AR.
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[Cordier and Largouët, 2001] M.-O. Cordier and
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