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Abstract most case$Rintanen, 200 Use of symbolic tools has also
. L been proposed, giving interesting resU®&humanret al,
We extend the decentralised/distributed approach 2004: 2007: Grastieat al, 2007.
_of diagnosis of dlscrete—ev_ent systems model_ed us- Another option is to consider local computations. Rather
ing automata. The goal is to avoid computing @ than computing the trajectories on the whole system, the tra
global diagnosis, which is expensive, and to per-  jectories are computed locally. The problem is then to make

form local diagnoses instead. To still ensure global  syre that the local sets of trajectories are consistentewiti
consistency, we transform the topology of the sys-  other, Unfortunately, local (pairwise) consistency does n
tem into a junction tree where each vertex repre-  angyre global consistency; worst, an algorithm that refimes

sents a subsystem. Local consistency between the  |ocal diagnoses pairwisely may not terminate. Methods were
diagnoses of these subsystems ensures global con-  yrgposed to avoid global computatifencolé and Cordier,
sistency due to the tree structure. This technique 2005; Cordier and Grastien, 2007; Su and Wonham, 2005;

will work best for systems whose natural structure  Fapreet al, 2005, but these methods do not scale up nicely.
is close to a tree structure, as the generated au- The complexity of numerous algorithms in different do-
tomata will be of reasonable size. mains drops when applied to trees. This is especially rateva

to the case of ensuring global consistency as local consigte
. ensures global consistency on a tree structure. A popwuar so
1 Introduction lution to convert a graph into a tree is to make it intuac-
Nowadays, many technical systems are highly automated, fion tree[Huang and Darwiche, 1998vhere the vertices are
not completely controlled by computers. As such systemgathered in clusters. We thus transform the topologicallyra
increase in complexity, their supervision becomes more andf the system into a junction tree where each cluster corre-
more challenging such that there is a strong need to automagponds to a subsystem. The diagnosis is performed locally on
the task. New methods are required to meet this objective. Weach cluster, and local consistency is applied until a fixpoi
are here concerned with the model-based diagnosis of sy# reached.
tems modeled as discrete-event systems (DE&ssandras The paper is divided as follows: we first present basic no-
and Lafortune, 1999. tations on languages and diagnosis. In Section 3, we discuss
It is well-known that the diagnosis of discrete-event sys-the issues of distributed diagnosis, and the central natfon
tems[Lamperti and Zanella, 2002an be seen as the com- consistency Our approach based on junction trees and local
putation of all the trajectories on the model consistenhwit consistency is presented Section 4.
the observations. This can be done by unfolding the model
according to the observations. The main challenge is theR Preliminaries
to cope with the complexity of the task as the representatio
of these trajectories is usually exponential in the numlfer o
components in the system.
To deal with systems of increasing size, several approachés1 Language Formalism
have been investigated. Afirst approach trades time foespac) gt 37 pe any set. We deno* the set of all finite sequences
the model of the system is compiled into a structure called thon y: an elementy = e;.--- ¢, € %* is called aword
Sampath diagnoséBampattet al, 1993 to enable efficient  gyer:: the empty word is denoted A languagel over
on-line computation. However, this structure is doublecexp ¥ js a subset o&*. The projection orY’ of a wordo over
nential in the number of components and cannot be built iny; 5 5/ denotedPs. .y (o) keeps all the elements ofin ¥'.

*Priscilla Kan John and Alban Grastien are with National In- Formally, _
formation and Communications Technology Australia (NIGaAd { € ifo=¢

Th this section, we present basic notations on language and
how it applies to the diagnosis of discrete-event systems.

The Research School of Information Sciences and Engirgerin P, s (o) = Ps_.»i (o) if c =e.c’ ande € ¥\ ¥’
Australian National University, Canberra. e.Ps_x/(c') if o =c.o’ande € 3



The projection onX’ of a languagel over ¥ is denoted to make mistakes or forget behaviours, reusability, corapac
Py (L) and defined by Ps_,x/(0) | 0 € L}. Theinverse ness.

operationPy; ' ., of the projection front to ' generates all Since the system is a set of components, each component
the finite words ort whose projection o’ is the parameter: 7: can be modeled separatelyiod; defined on alphabet;.
Pl (L) ={oce ¥ | Ps_x(0) €L} Some formalisms consider that components share variables.

The synchronous produch between two languages; Here, without loss of generality, we consider that compésen
overY; andL; overX, computes all the words ovéh U, share events such that an event shared by several components

whose projection oi; is £;: L1 ® L2 = {0 € (31 UX2)* | must occur on each component at the same time. Other events
Vi € {1,2}, Ps,us,—y,(0) € L;}. may occur in a completely concurrent manner.

The local consistency operation of language over 3, The systemI' = {v,...,7,} composed of compo-
on L, overY, denotedconss, x,(L1, Lo) returns the min-  Nentsyy, ..., v, is modeled as a set of languag@dod =

imum sublanguage of, such that the synchronous prod- {Mody, ..., Mod, } over the alphabet&,...,%,. The
uct with £, is not modified: conss, s,(£1,L2) = {0 €  9lobal model of the system is implicitly defined Byod =
Ly | Pg,_s,nx,(0) € Pg,_x,nx,(L£1)} or equivalently Mod; ® - @ Mod, but never explicitly computed.

1
consy, x, (L1, L2) = La O Py, s o, (Pri—mins (£1))- 3.2 Distributed Diagnosis and Global Consistency

2.2 Diagnosis of Discrete-Event Systems The alphabeX; that represents the events of each component

. . ; IS partitioned into observable events, and unobservable
We consider a system whose state can be described as the %§énts§]iu. Moreover, we consider that the global observa-

signment ofstate variablesover a discrete domain. We con- {ionsObs on the system can be distributed s, defined
sider the evolution of the state variables to also be discret 52, such thaDbs = Obs; @ - - - @ Obs,.

The set of all — including unexpected — possible behaviolurs o A distributions = {; S} e 92" e 4 set of subsets
this system is a language denotddd over the set of events - ¢\ 1 thats coversl“:751 O-U S, —T. A distributed
3} that can possibly occur on the system. The set of events '&iagnosisis a mapping that associates with each sutsset
partitioned intoobservableX, andunobservable, events. diagnosisiA(S;) such thatdA(Sy) @ --- ® dA(Sy) —
The occurrence of an observable event generates an obser\ﬂ- The Iiteraturez usually considerls th@ts a partitioﬁ of"
tion. While the system is running, it generates a flow of ob- P.encolé and Cordier, 20D5

servations. The sequence of observable events that occur I)n ;

the system is a word oR,.However, it is not always possi-
ble to determine precisely the sequence of observablesvent dA(S;) = ® (Modj, ® Obsy,). (2)
from the sequence of observations received. We represent th R ES:

sequence of observations by a language denotedwhere

each Word IObs is a sequence of observable events ConSISbuted as long as any; contains a small number of elements.
tent with the observations received.

. . ) .. However, the local diagnoses can be inconsistent with each
The diagnosis of the system is the problem of determmmgnher_ Basically, some words @f\(S;) should be removed
Because they disappear whgris synchronised with othe;
elements. Thus, we are interested by the globally consisten

The local diagnoses can be simply computed by:

This returns a distributed diagnosis that can be easily com-

on its behaviour. This can be simply computed by

A = Mod ® Obs. (1) distribqteq diagnos_is: _ _ _ _
A distributed diagnosisdA is globally consistentif
Languages can be represented by several tools. Reguldf € {1,...,m}, dA(S;) = Ps_x, (A) whereXs, =
languages are _often represen_ted by automata or Petri ne@wkesv Y.
The problem with these tools is that stlte explosionThe The globally consistent distributed diagnosis is such that
size of these structures is exponential in the number of statng word of anydA(S;) can be removed. We want to compute
variables, which makes them difficult to use in practice. this refineddistributed diagnosis but the goal is to avoid the

computation ofA.

3 Consistency in a Distributed Model 3.3 Local Consistency

Re.al-world systems are often distributed by natUEB.,a set  The local consistency property requires that any pair of
of interconnected components. The global behaviour of thg 4 diagnoses are consistent. Formally, a distributed

system is complex, whereas each component has a simple t{ﬁagnosisdA is locally consistent if¥{S;, S} C S,

haviour. Recent approaches take advantage of this distdbu Ps. sy 05 (AA(S1)) = Pry v nxs. (AA(S2))
1,778 2 751 2 '

nature to avoid computational blow up. It'is possible to refine a distributed diagnosis using local
_ . consistency as presented in Algorithm 1. After the distribu
3.1 Distributed Modeling tion is perf?)/rmeg, and a local di%gnosis is computed for each
Modern technical systems are usually formed by combiningubsystem, the algorithm takes pairs of subsystems and per-
simple components with simple behaviours leading to a deforms a local consistency on these diagnoses. Basicadly, th
vice that exhibits complex behaviours. Rather than modelidea is to remove the word @fA (S, ) that cannot be synchro-
ing the whole system, it is often preferable to model eachised with any word ofIA(.S;), and vice versa. The local
component separately for many good reasons: fewer chanceensistencies can actually be performed in any order.



Algorithm 1 Distributed diagnosis algorithm based on local = Psy_3,n.(Lx) (becaus&x Ny = ;N Xg)

consistency = Py, _x;nxy, (Pex—yx, (Lx)) (since
1 inpUt I, {NIOdl, ceey MOdn}, {ObSl, ceey Obsn} Ej NYg C Ej - Ex)

2: §={5, { , Sm } ::} distribution(T) = Py, _x,nx, (dA(S))) (by induction)
3:forall i € {1,...,m} do =P s, (dA(Sy, by local consistenc
4 dA(S) = ®,, s, (Modi ® Obsy,) - Pzwzf‘zk( dA( S’j” (by X Y)
5: repeat R €S = Ez:k_&:zxnfké (Ek)) (because
6: forall {Si,S:} CSdo x Nk = %5 N X

7 dA(S2) := conssg, v, (AA(S1), dA(S2)) Thus, Lx and dA(Sy) are locally consistent. Thus,
8  dA(S)) = conss,, v, (AA(Ss),dA(S)) for any 5, € X, Py, 5, (Lx ® dA(S)) =
9: until dA is stable Py x5, (Lx) = dA(Sp), and Py, x5, (Lx ®

dA(Si)) = dA(Sy).

. Thus, forX = S, we have the following resultys; € S,

_However, as shown ifSu and Wonham, 2005ocal con- P55, (A) = dA(S;). The distributed diagnosis is then
sistency does not ensure global consistency. Moreover, b%rﬂoballly consistent. O
cause the languages may be infinite, no fix-pointis reached i
the worst case; the algorithm does not terminate. As noticed ) S )
by the authors ifSu and Wonham, 2005 both problems We propose to build such a distribution of the system, using
disappear when the topology of the system forms atree.  the junction tree theory.

A topologyof a distributed representatighof the system ) ) )

is a graphg = (V, ) whereV = S is the set of vertices and 4  Diagnosis by Junction Tree
£ C VY xVisasymmetric and anti-reflexive set of edges such4_l Junction Tree

thatv{s, S’} CV,Ve € XgNXg/, 35, .., Sk+1 such that: ) ] ) i
, The concept of the junction tree is borrowed from the field of
o So=SandSy1 =95 probabilistic inference where its structure is useful farky
e Vie{l,...,k}, e€Xg,, and ing in complex domainfHuang and Darwiche, 1996Note
o Vic{0,...,k}, (Si,Siz1) €E thatjunction treesare also referred to gein treesin the lit-

eraturd Schumann and Huang, 2008
Two subsystems that share an event are connected through an d 9,20

edge, or through a chain of edges where intermediate subsyBefinition 1 (Junction Tree) LetG = (V, £) be a graph. A
tems also share this event. junction treefor G is a pair (7,C), whereT is a tree andC
The graphg is a tree if for any pairS; and S;, there is  is a function which maps gach node iin trﬁ_énto a IabeICZ-.
exactly one path on the graph that contains no loop and leadilled acluster The junction tree must satisfy the following
from S; to S;. Provided that the distribution of the system properties:
can be represented by a tree, the algorithm presented above . ¢, C V), i.e. each cluster is a set of vertices frafn
terminates and is sound. 2 If tw i ted @ th i to-
Because of space requirement, we only give a simplified = 0 vertices are connecte &\ they will appear to
proof of this last result. Similar proofs can be found 8u gether in some clustef;.
and Wonham, 20Q5with slightly different definition of the 3. If a vertex appears in two cluste¢s andC;, it must
topology. In particular ifSu and Wonham, 2005an edge also appear in every clustel, on the path connecting
connects two vertices whenever these two vertices share an vertices i and j in the junction tree. This is known as the
event, while here we only required them to be connected  running intersection property

through a chain of vertices that share this event. The separatoiof edge i-j in a junction tree is defined as

Consider that the distribution generates a tfee (V,€). ¢, n¢;. Thewidth of a junction tree is the size of its largest
Consider that the local diagnosi&\(S;) is computed for  j,ster minus one.

each subsysterfi; € V and that the local consistency pro- ) o ) )

cedure is applied until stability is reached. ~ One of the steps in obtaining a junction tree from a graph
Choose randomly some subsystéme V. We want to IS to triangulate the graphe., add extra links such that every

determine whethePs .y, (A) = dA(S;) which states that cycle of length greater than three has a chord. There are dif-

the diagnosis is globally consistent. To do so, wegeas ~ ferent ways to triangulate a graph, yielding different swts

the root of the tre/. Let X C V be a subset of subsystems, clusters. Moreover, each triangulated graph may haveaiever

we denotey = Jgex Zs andLy = @y dA(S). We different junction trees. It is therefore desirable to hepé-

build X incrementally fromX = {S;} by addingS, ¢ X mal trlan.gulatlon.s and optimal junction trees with respect

such thatS; € X and(Sy, S;) € &; note that because of the comple>_<|ty. As discussed later, the co_mplgxny here Qe_p(_and

definition of G and sinceg is a tree N N Sy, = ; N 5. on th_e size of the clusters: an optimal junction tree mingsis

We noteX’ = X U{S}. We prove by induction that for any the size o_f the Iar_ges; cluster. However, Fhe optlmalltybpro

S, € X, Ps,—x (Lx) = dA(S,). lem for tr|angulat|or_1 is NP—c_omp_Iete. ~Given a tr_langulated

P Lo b graph, we can obtain an optimal junction tree using an algo-

e Thisis clearly the case foX = {5,}. rithm from [Jensen and Jensen, 19&hich is quadratic in

e Poyyry, (Lx) the number of cliques.



The Figure 1 gives an example of three graphs and theithat is shared by subsysterfisand S;. We prove that any
junction trees. Note that thiéh junction tree is also a junction vertex.S in the path betweets; and.S; contains this event

tree for thejth graph ifi > j while it is not true ifi <

(e € Xs). There are two (possibly identical) componetts

j. The best junction tree is the first, as its biggest clusteand~, such thatvi € {1,2}, e € ¥, and~,; € S,. Since
contains three elements against five for the last; furtheemo componenty; and~. share an event, they are connected in
the first and second junction tree have the same largeséclustthe original topology and because of the second property of
CDG, hut the second largest cluster of the first junction tregunction trees, there is a clustérin the junction tree that

is smaller than that of the second junction tree.

Junction Tree for Graph 1 (JT 1)

En

CDG|

ABC

Junction Tree for Graphs 1, 2 (JT 2)

Graph 3 Junction Tree for Graphs 1, 2, 3 (JT 3)

Figure 1: Three graphs and corresponding junction trees

contains both component§y;, 12} C S). By the third prop-

erty of the junction tree, all clusters betwegrandS contain
componenty; and thus event. S can be betwees; andsS;

or outside, but in both cases there is a path of clusters be-
tweenS; andS; that share event. Thus, the junction tree
algorithm returns a tree-shaped distribution. O

Algorithm 2 Distribution using Junction Tree Algorithm

1: input T', {Mody, ..., Mod, }

2.V :=T

3 &= {(Vi,V}) €V2]i#j& 5N, +0}
4: S :={}

5. while V # 0 do

6: pickavertexXty € V

7. C:={V}Iu{V' |(V,V') e &}

8 &:=EU{(WN, V)| Vel Vel}

9 V:=V-{V}

100 E:=E—{(V, W) e&|Vi=VV,=V}

€f|
11:  if not@EC' € S| C C (') then
12: S:=8su{C}
13: return S

We perform distribution by rearranging the topology of the
system into a junction tree, as described in Algorithm 2. We
first obtain a graph of the original systeth= (V, £). Each
componenty in the system is a verteX on the graph. The
edges¢, on the graph represent connected components. We
use the junction tree algorithfiluang and Darwiche, 1996
to obtain the clusters that make p We pick a vertex
V € V. A clusterC is obtained by taking the set formed
by V' and its neighbourg,e. the vertices on the graph that
are connected t&” by an edge. We add edges so that all the
vertices that make up a cluster are conneafed.added taS
if it is not a subset of an element 8t We update the original
graph by removing/ and its associated edges from it. This
procedure is repeated until no more vertices are left on the
original graph. Itis then trivial to calculate the separatbat

The reasoning behind the use of junction trees in diagnosignk the clusters into a junction tree.

is that it could help avoid the need to compute a global di- - As mentioned, building an optimal junction tree is NP-
agnosis. Using a junction tree representation of a system hgomplete. However, we can use heuristics in the vertex se-

two main advantagd$Su and Wonham, 2005

lection phase of the algorithm (line 6) that would achieve

1. Atree representation of a system implies that local conpolynomial-time while still producing a high quality tree

sistency is equivalent to global consistency.

[Huang and Darwiche, 1996 One heuristic is to minimise

2. Non-termination issues with local consistency algo-the number of edges added to the grégjulff, 1990] (line 8

rithms can be resolved.

4.2 Distribution Algorithm

of the algorithm), which then achieves a low-polynomial
complexity.

The junction tree algorithm returns a topology as defined pre  We mentioned in section 3.3 that local consistencies can
viously, provided it is followed by computation of the edgesbe performed in any order. However, we can use a strategy,

of the tree itself. Indeed, let € Y5, N X, be an event

global propagatiorfHuang and Darwiche, 199&hat would



only require two ordered series of local consistency compu- €i—1
tations on the junction tree to achieve global consisteviey.
consider a message pass from a cluétgrto its neighbour

Cy to be an operation that makes the components pflo-

cally consistent with those d@fy . By performing these mes-
sage passes in an ordered manner, we ensure that the consis-
tency introduced by previous message passes is preserved. Figure 3: Automaton that models the language of ndge

The natural topology of the system has an important im-
pact on the quality of the produced junction tree, and hence
the size of the subsystems. If we start off with a near triee-li
structure, the resulting junction tree will produce smadiee
clusters, and hence smaller automata to work with, reducing
complexity.E.g.in Figure 1, graph 1 produces the best junc-
tion tree with smallest clusters (JT 1). With graph 3, beeaus
of the larger size clusters, the local diagnoses will abjuzd
quite big (JT 3). Theree-widthof a graph is the size of the
largest cluster in its optimal junction tree minus one. Grid

Gather Distribute for instance have a tree-width linear in the size of the short
_ ) ) est side. Thus, we emphasize the importance of designing the
Figure 2: Global Propagation on Junction Tree system in a tree-like structure to make it easier to diagnose

We arbitrarily pick a clustef,. € S to be the root of the .
junction tree. We start from each leaf node and perform lo- In [Su and Wonham, 2005the authors proposed a sim-

cal consistency with the neighbour until the root is reached@ lgorithm for the distributed diagnosis of discreieet
systems. A local diagnosis is computed for each component.

(thegatherphase). We then perform local consistency in theTh . di o tall hronised with
other direction, from the root back to the leaves @rstribute €n, a given diagnosis Is incrementally synchronised wi
e other diagnoses, which ensures global consistency. Af-

h . All the cl rs are now locally, an n ntl o .
Sloeg)saell)y, con;isiezg\?\;[i(tahsoﬁeean?)the?.cj?h)il,s gr:cggufgugf t er each synchronisation, the events that appear only in com
trated in Figure 2. ponents that have alreac_iy been synch_ronlsed can be safely

abstracted: the current diagnosis is projected on theaetev
4.3 Discussion events, Which reduces the complexity. _

] ) ) ) . ) ) This algorithm can be seen as a special case of our ap-
Using a junction tree is very interesting as the resultirty- su proach with three main differences. First, it implicitlyilols
systems tends to be of small size. However, this does not negrjunction ling since the diagnoses are synchronised in se-
essarily imply that the local diagnoses will actually be Bma quence. This restriction potentially increases the widtine
as we show in the next example. junction tree, with a negative impact on the global efficienc

Consider a tree with nodesN; to N,,. Each nodeV; is Second, this algorithm builds a junction tree/line on the
associated with events_, ande;. The topology of the treeis  graph ofeventsrather than the graph of components. This
thus simply a line as nod¥; shares event; with nodeN; 1. can also be done in our approach. In this case, two events are
The automaton of each nod¥; is represented in Figure 3. connected in a graph of events iff they are shared by some
Since the initial state is the same as the final state, the BUmbcomponent_ Since all the events of a given Component are in-
of occurrences of event is twice that of event;_; forany  terconnected, at least one cluster will contain all thesses
i. Consider the nodéV; runsk € N loops. Then, event and will be initialised with the diagnosis of this component
eo occursk times, evene; occurs2 x k times, etc. Event (potentially synchronised with the diagnosis of other comp
e; occurs2® x k times. The globally consistent automaton nents). Considering the graph of events leads to clustéhs wi
representation the behaviour on naliemust represent the |ess, or in the worst case as many, events than in the approach
fact that event;_; occurred2’~" x k times and the evemt  presented in this paper, thus reducing complexity.
occurred2’ x k times for any natural numbér (and not for Finally, a dynamic strategy to choose the order of the syn-
rational non natural numbers). This requigés' + 2° states  chronisation is proposed Su and Wonham, 2005In this
and transitions. I_n this exam_plg, the number of states afte‘gaper, the junction tree is computed before the local diag-
local consistency is exponential in the number of node  noses are generated. Future works include such a dynamic

The result basically comes from the fact that the events construction of the junction tree that takes the size of the |
ande; in this example are not concurrent events but they occal diagnoses into account.

cur in sequence. We expect that most systems actually exhibi
concurrent behaviours. In this case, the size of the loeaj-di :

nosis on a cluster is a direct function of the number of eventé5 Conclusion and Future Works

attached with this cluster, and thus smaller cluster leaa to In this article, we identified the importance of a distrilouti
better efficiency. of the system into (possibly overlapping) subsystems fer th



diagnosis of discrete-event systems. If the distributien-g International Joint Conference on Atrtificial Intelligence
erates a tree-shaped topology, an algorithm based on local (IJCAI-07), pages 292-297. AAAI press, 2007.

consistency can ensure global consistency of the diagnos(i?:abreet al, 200§ E. Fabre, A. Benveniste, S. Haar, and
We used the graph theory of junction trees to obtain good | jard. Distributed monitoring of concurrent and asyn-

distributions. The complexity of the diagnosis is then of-  .,.ohous systems.Journal of Discrete Event Systems
ten bounded by the tree width of the system topology which pages 33-84, 2005. special issue.

nise together, though counter-examples exist. FGrastienet al, 2007 A. Grastien, Anbulagan, J. Rintanen,
We think there is still room for improvement. First, we ~and E.Kelareva. Diagnosis of discrete-event systems using

proposed a static construction of the junction tree basgd on ~ Satisfiability algorithms. In R. Holte, editoNineteenth

on the topology of the system. We want to investigate a more National Conference on Artificial Intelligence (AAAI-07)

flexible technique where the junction tree is built aftergdia ~ AAAI Press, 2007.

noses and simple pruning operations are performed locally o[Huang and Darwiche, 1996C. Huang and A. Darwiche.

components. The idea is that some connections in the system Inference in belief networks: A procedural guidieterna-

topology can be removed when no communication happened tional Journal of Approximate Reasonintp(3):225—-263,

through these connections, leading to a graph with a smaller 1996.

tree width. Moreover, we could _then assign weig_ht on eaC'PJensen and Jensen, 199aV. Jensen and F. Jensen. Opti-
vertex of the graph. These technique should then improve the mal junction trees. IProceedings of the Tenth Conference

efficiency of diagnosis. More generally, we want to investi- o, Jncertainty in Artificial Intelligence, Seattle, Wastpn
gate more dynamic computations of junction trees: experi- o 1994,

ments have shown that the connections can often be remov?d_ ) ) )

after the distributed diagnosis is computed during thellocalKirulff, 1990] U. Kirulff. Triangulation of graphs - algo-
consistency algorithm. For this reason, we want to start the Tithms giving small total state space, 1990.

diagnosis algorithm while the junction tree is being coneput  [Lamperti and Zanella, 2003G. Lamperti and M. Zanella.
so as to dynamically change the construction of the junction Diagnosis of Active System&luwer Academic Publish-

tree. This is not trivial as the construction of the juncticee ers, 2003.
must satisfy some properties. . . (gPencoIé and Cordier, 20D%. Pencolé and M.-O. Cordier.
Regarding system design, an interesting exploration woul

. . . -~ A formal framework for the decentralised diagnosis of
be to interact with the system designer to propose altemati large scale discrete event systems and its application to

topology structures in the system in order to ensure a reason  e|ecommunication networkdrtificial Intelligence (AlJ)
able tree width of the system. 164:121-170. 2005

Finally, we considered that the observations emitted by dif i ) . o
ferent components were completely independent. However, [Rintanen, 20017 J. Rintanen. Diagnosers and diagnosability
is often the case that a (partial) order exists between the ob Of succint transition systems. In M. Veloso, editBro-
servationsE.g. the alarm emitted by component 1 was surely ceedings of the 20th Joint Conference on Atrtificial Intelli-
emitted before the alarm from component 2. This generates 9ence (AAAI-07)AAAI Press, 2007.
some kind of connection between the two components anfSampatret al, 1999 M. Sampath, R. Sengupta, S. Lafor-
potentially interconnect all the components. We want to in- tune, K. Sinnamohideen, and D. Teneketzis. Diagnosabil-
vestigate this issue and determine when these connectionsc ity of discrete-event systemtEEE Transactions on Auto-
be removed, possibly with an approach based on time slicing matic Contro} 40(9):1555-1575, 1995.
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