
Local Consistency and Junction Tree
for Diagnosis of Discrete-Event Systems

Priscilla Kan John∗

priscilla.kanjohn@anu.edu.au
Alban Grastien∗

alban.grastien@nicta.com.au

Keywords: Diagnosis, Discrete-event systems, Junction Tree, Local consistency

Abstract

We extend the decentralised/distributed approach
of diagnosis of discrete-event systems modeled us-
ing automata. The goal is to avoid computing a
global diagnosis, which is expensive, and to per-
form local diagnoses instead. To still ensure global
consistency, we transform the topology of the sys-
tem into a junction tree where each vertex repre-
sents a subsystem. Local consistency between the
diagnoses of these subsystems ensures global con-
sistency due to the tree structure. This technique
will work best for systems whose natural structure
is close to a tree structure, as the generated au-
tomata will be of reasonable size.

1 Introduction
Nowadays, many technical systems are highly automated, if
not completely controlled by computers. As such systems
increase in complexity, their supervision becomes more and
more challenging such that there is a strong need to automate
the task. New methods are required to meet this objective. We
are here concerned with the model-based diagnosis of sys-
tems modeled as discrete-event systems (DES,[Cassandras
and Lafortune, 1999]).

It is well-known that the diagnosis of discrete-event sys-
tems[Lamperti and Zanella, 2003] can be seen as the com-
putation of all the trajectories on the model consistent with
the observations. This can be done by unfolding the model
according to the observations. The main challenge is then
to cope with the complexity of the task as the representation
of these trajectories is usually exponential in the number of
components in the system.

To deal with systems of increasing size, several approaches
have been investigated. A first approach trades time for space:
the model of the system is compiled into a structure called the
Sampath diagnoser[Sampathet al., 1995] to enable efficient
on-line computation. However, this structure is double expo-
nential in the number of components and cannot be built in

∗Priscilla Kan John and Alban Grastien are with National In-
formation and Communications Technology Australia (NICTA) and
The Research School of Information Sciences and Engineering,
Australian National University, Canberra.

most cases[Rintanen, 2007]. Use of symbolic tools has also
been proposed, giving interesting results[Schumannet al.,
2004; 2007; Grastienet al., 2007].

Another option is to consider local computations. Rather
than computing the trajectories on the whole system, the tra-
jectories are computed locally. The problem is then to make
sure that the local sets of trajectories are consistent witheach
other. Unfortunately, local (pairwise) consistency does not
ensure global consistency; worst, an algorithm that refinesthe
local diagnoses pairwisely may not terminate. Methods were
proposed to avoid global computation[Pencolé and Cordier,
2005; Cordier and Grastien, 2007; Su and Wonham, 2005;
Fabreet al., 2005], but these methods do not scale up nicely.

The complexity of numerous algorithms in different do-
mains drops when applied to trees. This is especially relevant
to the case of ensuring global consistency as local consistency
ensures global consistency on a tree structure. A popular so-
lution to convert a graph into a tree is to make it into ajunc-
tion tree[Huang and Darwiche, 1996], where the vertices are
gathered in clusters. We thus transform the topological graph
of the system into a junction tree where each cluster corre-
sponds to a subsystem. The diagnosis is performed locally on
each cluster, and local consistency is applied until a fixpoint
is reached.

The paper is divided as follows: we first present basic no-
tations on languages and diagnosis. In Section 3, we discuss
the issues of distributed diagnosis, and the central notionof
consistency. Our approach based on junction trees and local
consistency is presented Section 4.

2 Preliminaries
In this section, we present basic notations on language and
how it applies to the diagnosis of discrete-event systems.

2.1 Language Formalism
Let Σ be any set. We denoteΣ⋆ the set of all finite sequences
on Σ; an elementσ = e1. · · · .en ∈ Σ⋆ is called aword
over Σ; the empty word is denotedε. A languageL over
Σ is a subset ofΣ⋆. The projection onΣ′ of a wordσ over
Σ ⊇ Σ′ denotedPΣ→Σ′ (σ) keeps all the elements ofσ in Σ′.
Formally,

PΣ→Σ′ (σ) =

{

ε if σ = ε
PΣ→Σ′ (σ′) if σ = e.σ′ ande ∈ Σ \ Σ′

e.PΣ→Σ′ (σ′) if σ = e.σ′ ande ∈ Σ′



The projection onΣ′ of a languageL over Σ is denoted
PΣ→Σ′ (L) and defined by{PΣ→Σ′ (σ) | σ ∈ L}. The inverse
operationP−1

Σ→Σ′ of the projection fromΣ to Σ′ generates all
the finite words onΣ whose projection onΣ′ is the parameter:
P−1

Σ→Σ′ (L) = {σ ∈ Σ⋆ | PΣ→Σ′ (σ) ∈ L}.
The synchronous product⊗ between two languagesL1

overΣ1 andL2 overΣ2 computes all the words overΣ1∪Σ2

whose projection onΣi isLi: L1 ⊗L2 = {σ ∈ (Σ1 ∪Σ2)
⋆ |

∀i ∈ {1, 2}, PΣ1∪Σ2→Σi
(σ) ∈ Li}.

The local consistency operation of languageL1 over Σ1

on L2 overΣ2 denotedconsΣ1,Σ2
(L1,L2) returns the min-

imum sublanguage ofL2 such that the synchronous prod-
uct with L1 is not modified: consΣ1,Σ2

(L1,L2) = {σ ∈
L2 | PΣ2→Σ1∩Σ2

(σ) ∈ PΣ1→Σ1∩Σ2
(L1)} or equivalently

consΣ1,Σ2
(L1,L2) = L2 ∩ P−1

Σ2→Σ1∩Σ2
(PΣ1→Σ1∩Σ2

(L1)).

2.2 Diagnosis of Discrete-Event Systems
We consider a system whose state can be described as the as-
signment ofstate variablesover a discrete domain. We con-
sider the evolution of the state variables to also be discrete.
The set of all – including unexpected – possible behaviours of
this system is a language denotedMod over the set of events
Σ that can possibly occur on the system. The set of events is
partitioned intoobservableΣo andunobservableΣu events.
The occurrence of an observable event generates an observa-
tion. While the system is running, it generates a flow of ob-
servations. The sequence of observable events that occur on
the system is a word onΣo.However, it is not always possi-
ble to determine precisely the sequence of observable events
from the sequence of observations received. We represent the
sequence of observations by a language denotedObs, where
each word inObs is a sequence of observable events consis-
tent with the observations received.

The diagnosis of the system is the problem of determining
what possibly happened on the system given the observations
on its behaviour. This can be simply computed by

∆ = Mod ⊗ Obs. (1)

Languages can be represented by several tools. Regular
languages are often represented by automata or Petri nets.
The problem with these tools is that ofstate explosion. The
size of these structures is exponential in the number of state
variables, which makes them difficult to use in practice.

3 Consistency in a Distributed Model
Real-world systems are often distributed by nature,i.e. a set
of interconnected components. The global behaviour of the
system is complex, whereas each component has a simple be-
haviour. Recent approaches take advantage of this distributed
nature to avoid computational blow up.

3.1 Distributed Modeling
Modern technical systems are usually formed by combining
simple components with simple behaviours leading to a de-
vice that exhibits complex behaviours. Rather than model-
ing the whole system, it is often preferable to model each
component separately for many good reasons: fewer chances

to make mistakes or forget behaviours, reusability, compact-
ness.

Since the system is a set of components, each component
γi can be modeled separately:Modi defined on alphabetΣi.
Some formalisms consider that components share variables.
Here, without loss of generality, we consider that components
share events such that an event shared by several components
must occur on each component at the same time. Other events
may occur in a completely concurrent manner.

The systemΓ = {γ1, . . . , γn} composed of compo-
nentsγ1, . . . , γn is modeled as a set of languagesdMod =
{Mod1, . . . , Modn} over the alphabetsΣ1, . . . , Σn. The
global model of the system is implicitly defined byMod =
Mod1 ⊗ · · · ⊗ Modn but never explicitly computed.

3.2 Distributed Diagnosis and Global Consistency
The alphabetΣi that represents the events of each component
γi is partitioned into observable eventsΣio and unobservable
eventsΣiu. Moreover, we consider that the global observa-
tionsObs on the system can be distributed intoObsi defined
onΣio such thatObs = Obs1 ⊗ · · · ⊗ Obsn.

A distributionS = {S1, . . . , Sm} ∈ 22
Γ

is a set of subsets
of Γ such thatS coversΓ: S1 ∪ · · · ∪ Sm = Γ. A distributed
diagnosisis a mapping that associates with each subsetSi

a diagnosisd∆(Si) such thatd∆(S1) ⊗ · · · ⊗ d∆(Sm) =
∆. The literature usually considers thatS is a partition ofΓ
[Pencolé and Cordier, 2005].

The local diagnoses can be simply computed by:

d∆(Si) =
⊗

γk∈Si

(Modk ⊗ Obsk). (2)

This returns a distributed diagnosis that can be easily com-
puted as long as anySi contains a small number of elements.
However, the local diagnoses can be inconsistent with each
other. Basically, some words ofd∆(Si) should be removed
because they disappear whenSi is synchronised with otherSj

elements. Thus, we are interested by the globally consistent
distributed diagnosis:

A distributed diagnosisd∆ is globally consistentif
∀i ∈ {1, . . . , m}, d∆(Si) = PΣ→ΣSi

(∆) whereΣSi
=

⋃

γk∈Si
Σk.

The globally consistent distributed diagnosis is such that
no word of anyd∆(Si) can be removed. We want to compute
this refineddistributed diagnosis but the goal is to avoid the
computation of∆.

3.3 Local Consistency
The local consistency property requires that any pair of
local diagnoses are consistent. Formally, a distributed
diagnosisd∆ is locally consistent if∀{S1, S2} ⊆ S,
PΣS1

→ΣS1
∩ΣS2

(d∆(S1)) = PΣS2
→ΣS1

∩ΣS2
(d∆(S2)).

It is possible to refine a distributed diagnosis using local
consistency as presented in Algorithm 1. After the distribu-
tion is performed, and a local diagnosis is computed for each
subsystem, the algorithm takes pairs of subsystems and per-
forms a local consistency on these diagnoses. Basically, the
idea is to remove the word ofd∆(S1) that cannot be synchro-
nised with any word ofd∆(S2), and vice versa. The local
consistencies can actually be performed in any order.



Algorithm 1 Distributed diagnosis algorithm based on local
consistency

1: input Γ, {Mod1, . . . , Modn}, {Obs1, . . . , Obsn}
2: S = {S1, . . . , Sm} := distribution(Γ)
3: for all i ∈ {1, . . . , m} do
4: d∆(Si) =

⊗

γk∈Si
(Modk ⊗ Obsk)

5: repeat
6: for all {S1, S2} ⊆ S do
7: d∆(S2) := consΣS1

,ΣS2
(d∆(S1), d∆(S2))

8: d∆(S1) := consΣS2
,ΣS1

(d∆(S2), d∆(S1))
9: until d∆ is stable

However, as shown in[Su and Wonham, 2005], local con-
sistency does not ensure global consistency. Moreover, be-
cause the languages may be infinite, no fix-point is reached in
the worst case; the algorithm does not terminate. As noticed
by the authors in[Su and Wonham, 2005] , both problems
disappear when the topology of the system forms a tree.

A topologyof a distributed representationS of the system
is a graphG = 〈V , E〉 whereV = S is the set of vertices and
E ⊆ V×V is a symmetric and anti-reflexive set of edges such
that∀{S, S′} ⊆ V , ∀e ∈ ΣS ∩ΣS′ , ∃S0, . . . , Sk+1 such that:

• S0 = S andSk+1 = S′

• ∀i ∈ {1, . . . , k}, e ∈ ΣSi
, and

• ∀i ∈ {0, . . . , k}, 〈Si, Si+1〉 ∈ E

Two subsystems that share an event are connected through an
edge, or through a chain of edges where intermediate subsys-
tems also share this event.

The graphG is a tree if for any pairSi andSj , there is
exactly one path on the graph that contains no loop and leads
from Si to Sj . Provided that the distribution of the system
can be represented by a tree, the algorithm presented above
terminates and is sound.

Because of space requirement, we only give a simplified
proof of this last result. Similar proofs can be found in[Su
and Wonham, 2005] with slightly different definition of the
topology. In particular in[Su and Wonham, 2005], an edge
connects two vertices whenever these two vertices share an
event, while here we only required them to be connected
through a chain of vertices that share this event.

Consider that the distribution generates a treeG = 〈V , E〉.
Consider that the local diagnosisd∆(Si) is computed for
each subsystemSi ∈ V and that the local consistency pro-
cedure is applied until stability is reached.

Choose randomly some subsystemSi ∈ V . We want to
determine whetherPΣ→Σi

(∆) = d∆(Si) which states that
the diagnosis is globally consistent. To do so, we setSi as
the root of the treeG. Let X ⊆ V be a subset of subsystems,
we denoteΣX =

⋃

S∈X ΣS andLX =
⊗

S∈X d∆(S). We
build X incrementally fromX = {Si} by addingSk /∈ X
such thatSj ∈ X and〈Sk, Sj〉 ∈ E ; note that because of the
definition ofG and sinceG is a tree,ΣX ∩ Σk = Σj ∩ Σk.
We noteX ′ = X ∪{Sk}. We prove by induction that for any
Sp ∈ X , PΣX→Σp

(LX) = d∆(Sp).

• This is clearly the case forX = {Si}.

• PΣX→ΣX∩Σk
(LX)

= PΣX→Σj∩Σk
(LX) (becauseΣX ∩ Σk = Σj ∩ Σk)

= PΣj→Σj∩Σk
(PΣX→Σj

(LX)) (since
Σj ∩ Σk ⊆ Σj ⊆ ΣX )

= PΣj→Σj∩Σk
(d∆(Sj)) (by induction)

= PΣk→Σj∩Σk
(d∆(Sk)) (by local consistency)

= PΣk→ΣX∩Σk
(d∆(Sk)) (because

ΣX ∩ Σk = Σj ∩ Σk)

Thus, LX and d∆(Sk) are locally consistent. Thus,
for any Sp ∈ X , PΣX′→Σp

(LX ⊗ d∆(Sk)) =
PΣX→Σp

(LX) = d∆(Sp), and PΣX′→Σk
(LX ⊗

d∆(Sk)) = d∆(Sk).

Thus, forX = S, we have the following result:∀Si ∈ S,
PΣ→Σi

(∆) = d∆(Si). The distributed diagnosis is then
globally consistent. 2

We propose to build such a distribution of the system, using
the junction tree theory.

4 Diagnosis by Junction Tree
4.1 Junction Tree
The concept of the junction tree is borrowed from the field of
probabilistic inference where its structure is useful for work-
ing in complex domains[Huang and Darwiche, 1996]. Note
that junction treesare also referred to asjoin treesin the lit-
erature[Schumann and Huang, 2008].

Definition 1 (Junction Tree) LetG = 〈V , E〉 be a graph. A
junction treefor G is a pair (T , C), whereT is a tree andC
is a function which maps each node i in treeT into a labelCi

called acluster. The junction tree must satisfy the following
properties:

1. Ci ⊆ V , i.e. each cluster is a set of vertices fromG.

2. If two vertices are connected inG, they will appear to-
gether in some clusterCi.

3. If a vertex appears in two clustersCi and Cj , it must
also appear in every clusterCh on the path connecting
vertices i and j in the junction tree. This is known as the
running intersection property.

The separatorof edge i-j in a junction tree is defined as
Ci ∩ Cj . Thewidth of a junction tree is the size of its largest
cluster minus one.

One of the steps in obtaining a junction tree from a graph
is to triangulate the graph,i.e., add extra links such that every
cycle of length greater than three has a chord. There are dif-
ferent ways to triangulate a graph, yielding different setsof
clusters. Moreover, each triangulated graph may have several
different junction trees. It is therefore desirable to haveopti-
mal triangulations and optimal junction trees with respectto
complexity. As discussed later, the complexity here depends
on the size of the clusters: an optimal junction tree minimises
the size of the largest cluster. However, the optimality prob-
lem for triangulation is NP-complete. Given a triangulated
graph, we can obtain an optimal junction tree using an algo-
rithm from [Jensen and Jensen, 1994] which is quadratic in
the number of cliques.



The Figure 1 gives an example of three graphs and their
junction trees. Note that theith junction tree is also a junction
tree for thejth graph if i > j while it is not true if i <
j. The best junction tree is the first, as its biggest cluster
contains three elements against five for the last; furthermore,
the first and second junction tree have the same largest cluster
CDG, but the second largest cluster of the first junction tree
is smaller than that of the second junction tree.

A

B C D

E

F

G

H I

Graph 1

BC

AC

CDG

DE

DF

GH GI

Junction Tree for Graph 1 (JT 1)

A

B C D

E

F

G

H I

Graph 2

ABC

CDG

DEF

GHI

Junction Tree for Graphs 1, 2 (JT 2)

A

B C D

E

F

G

H I

Graph 3

ABCE BCEH

CDGEH

DEGHI DEFI

Junction Tree for Graphs 1, 2, 3 (JT 3)

Figure 1: Three graphs and corresponding junction trees

The reasoning behind the use of junction trees in diagnosis
is that it could help avoid the need to compute a global di-
agnosis. Using a junction tree representation of a system has
two main advantages[Su and Wonham, 2005]:

1. A tree representation of a system implies that local con-
sistency is equivalent to global consistency.

2. Non-termination issues with local consistency algo-
rithms can be resolved.

4.2 Distribution Algorithm
The junction tree algorithm returns a topology as defined pre-
viously, provided it is followed by computation of the edges
of the tree itself. Indeed, lete ∈ ΣS1

∩ ΣS2
be an event

that is shared by subsystemsSi andSj . We prove that any
vertexS in the path betweenSi andSj contains this event
(e ∈ ΣS). There are two (possibly identical) componentsγ1

andγ2 such that∀i ∈ {1, 2}, e ∈ Σi andγi ∈ Si. Since
componentγ1 andγ2 share an event, they are connected in
the original topology and because of the second property of
junction trees, there is a clusterS in the junction tree that
contains both components ({γ1, γ2} ⊆ S). By the third prop-
erty of the junction tree, all clusters betweenSi andS contain
componentγi and thus evente. S can be betweenSi andSj

or outside, but in both cases there is a path of clusters be-
tweenS1 andS2 that share evente. Thus, the junction tree
algorithm returns a tree-shaped distribution. 2

Algorithm 2 Distribution using Junction Tree Algorithm

1: input Γ, {Mod1, . . . , Modn}
2: V := Γ
3: E := {〈Vi, Vj〉 ∈ V2 | i 6= j & Σi ∩ Σj 6= ∅}
4: S := {}
5: while V 6= ∅ do
6: pick a vertexV ∈ V
7: C := {V } ∪ {V ′ | 〈V, V ′〉 ∈ E}
8: E := E ∪ {〈V1, V2〉 | V1 ∈ C, V2 ∈ C}
9: V := V − {V }

10: E := E − {〈V1, V2〉 ∈ E | V1 = V ∨ V2 = V }
11: if not (∃C′ ∈ S | C ⊆ C′) then
12: S := S ∪ {C}
13: return S

We perform distribution by rearranging the topology of the
system into a junction tree, as described in Algorithm 2. We
first obtain a graph of the original system,G = 〈V , E〉. Each
componentγ in the system is a vertexV on the graph. The
edges,E , on the graph represent connected components. We
use the junction tree algorithm[Huang and Darwiche, 1996]
to obtain the clusters that make upS. We pick a vertex
V ∈ V . A clusterC is obtained by taking the set formed
by V and its neighbours,i.e. the vertices on the graph that
are connected toV by an edge. We add edges so that all the
vertices that make up a cluster are connected.C is added toS
if it is not a subset of an element ofS. We update the original
graph by removingV and its associated edges from it. This
procedure is repeated until no more vertices are left on the
original graph. It is then trivial to calculate the separators that
link the clusters into a junction tree.

As mentioned, building an optimal junction tree is NP-
complete. However, we can use heuristics in the vertex se-
lection phase of the algorithm (line 6) that would achieve
polynomial-time while still producing a high quality tree
[Huang and Darwiche, 1996]. One heuristic is to minimise
the number of edges added to the graph[Kjrulff, 1990] (line 8
of the algorithm), which then achieves a low-polynomial
complexity.

We mentioned in section 3.3 that local consistencies can
be performed in any order. However, we can use a strategy,
global propagation[Huang and Darwiche, 1996], that would



only require two ordered series of local consistency compu-
tations on the junction tree to achieve global consistency.We
consider a message pass from a clusterCX to its neighbour
CY to be an operation that makes the components ofCX lo-
cally consistent with those ofCY . By performing these mes-
sage passes in an ordered manner, we ensure that the consis-
tency introduced by previous message passes is preserved.

BC

AC

CDG

DE

DF

GH GI

Root

Gather

BC

AC

CDG

DE

DF

GH GI

Root

Distribute

Figure 2: Global Propagation on Junction Tree

We arbitrarily pick a clusterSr ∈ S to be the root of the
junction tree. We start from each leaf node and perform lo-
cal consistency with the neighbour until the root is reached
(thegatherphase). We then perform local consistency in the
other direction, from the root back to the leaves (thedistribute
phase). All the clusters are now locally, and consequently
globally, consistent with one another. This procedure is illus-
trated in Figure 2.

4.3 Discussion
Using a junction tree is very interesting as the resulting sub-
systems tends to be of small size. However, this does not nec-
essarily imply that the local diagnoses will actually be small
as we show in the next example.

Consider a tree withn nodesN1 to Nn. Each nodeNi is
associated with eventsei−1 andei. The topology of the tree is
thus simply a line as nodeNi shares eventei with nodeNi+1.
The automaton of each nodeNi is represented in Figure 3.
Since the initial state is the same as the final state, the number
of occurrences of eventei is twice that of eventei−1 for any
i. Consider the nodeN1 runsk ∈ N loops. Then, event
e0 occursk times, evente1 occurs2 × k times, etc. Event
ei occurs2i × k times. The globally consistent automaton
representation the behaviour on nodeNi must represent the
fact that eventei−1 occurred2i−1 × k times and the eventei

occurred2i × k times for any natural numberk (and not for
rational non natural numbers). This requires2i−1 + 2i states
and transitions. In this example, the number of states after
local consistency is exponential in the number of nodes.�

The result basically comes from the fact that the eventsei

andej in this example are not concurrent events but they oc-
cur in sequence. We expect that most systems actually exhibit
concurrent behaviours. In this case, the size of the local diag-
nosis on a cluster is a direct function of the number of events
attached with this cluster, and thus smaller cluster lead toa
better efficiency.

ei ei

ei−1

Figure 3: Automaton that models the language of nodeNi

The natural topology of the system has an important im-
pact on the quality of the produced junction tree, and hence
the size of the subsystems. If we start off with a near tree-like
structure, the resulting junction tree will produce smaller size
clusters, and hence smaller automata to work with, reducing
complexity.E.g. in Figure 1, graph 1 produces the best junc-
tion tree with smallest clusters (JT 1). With graph 3, because
of the larger size clusters, the local diagnoses will actually be
quite big (JT 3). Thetree-widthof a graph is the size of the
largest cluster in its optimal junction tree minus one. Grids
for instance have a tree-width linear in the size of the short-
est side. Thus, we emphasize the importance of designing the
system in a tree-like structure to make it easier to diagnose.

In [Su and Wonham, 2005], the authors proposed a sim-
ilar algorithm for the distributed diagnosis of discrete-event
systems. A local diagnosis is computed for each component.
Then, a given diagnosis is incrementally synchronised with
the other diagnoses, which ensures global consistency. Af-
ter each synchronisation, the events that appear only in com-
ponents that have already been synchronised can be safely
abstracted: the current diagnosis is projected on the relevant
events, which reduces the complexity.

This algorithm can be seen as a special case of our ap-
proach with three main differences. First, it implicitly builds
a junction line, since the diagnoses are synchronised in se-
quence. This restriction potentially increases the width of the
junction tree, with a negative impact on the global efficiency.

Second, this algorithm builds a junction tree/line on the
graph ofeventsrather than the graph of components. This
can also be done in our approach. In this case, two events are
connected in a graph of events iff they are shared by some
component. Since all the events of a given component are in-
terconnected, at least one cluster will contain all these events
and will be initialised with the diagnosis of this component
(potentially synchronised with the diagnosis of other compo-
nents). Considering the graph of events leads to clusters with
less, or in the worst case as many, events than in the approach
presented in this paper, thus reducing complexity.

Finally, a dynamic strategy to choose the order of the syn-
chronisation is proposed in[Su and Wonham, 2005]. In this
paper, the junction tree is computed before the local diag-
noses are generated. Future works include such a dynamic
construction of the junction tree that takes the size of the lo-
cal diagnoses into account.

5 Conclusion and Future Works
In this article, we identified the importance of a distribution
of the system into (possibly overlapping) subsystems for the



diagnosis of discrete-event systems. If the distribution gen-
erates a tree-shaped topology, an algorithm based on local
consistency can ensure global consistency of the diagnosis.
We used the graph theory of junction trees to obtain good
distributions. The complexity of the diagnosis is then of-
ten bounded by the tree width of the system topology which
places an upper bound on the number of automata to synchro-
nise together, though counter-examples exist.

We think there is still room for improvement. First, we
proposed a static construction of the junction tree based only
on the topology of the system. We want to investigate a more
flexible technique where the junction tree is built after diag-
noses and simple pruning operations are performed locally on
components. The idea is that some connections in the system
topology can be removed when no communication happened
through these connections, leading to a graph with a smaller
tree width. Moreover, we could then assign weight on each
vertex of the graph. These technique should then improve the
efficiency of diagnosis. More generally, we want to investi-
gate more dynamic computations of junction trees: experi-
ments have shown that the connections can often be removed
after the distributed diagnosis is computed during the local
consistency algorithm. For this reason, we want to start the
diagnosis algorithm while the junction tree is being computed
so as to dynamically change the construction of the junction
tree. This is not trivial as the construction of the junctiontree
must satisfy some properties.

Regarding system design, an interesting exploration would
be to interact with the system designer to propose alternative
topology structures in the system in order to ensure a reason-
able tree width of the system.

Finally, we considered that the observations emitted by dif-
ferent components were completely independent. However, it
is often the case that a (partial) order exists between the ob-
servations.E.g. the alarm emitted by component 1 was surely
emitted before the alarm from component 2. This generates
some kind of connection between the two components and
potentially interconnect all the components. We want to in-
vestigate this issue and determine when these connections can
be removed, possibly with an approach based on time slicing
[Cordier and Grastien, 2007].

6 Acknowledgements
This research was supported by NICTA in the framework of
the SuperCom project. NICTA is funded by the Australian
Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence pro-
gram.

References
[Cassandras and Lafortune, 1999] C. Cassandras and

S. Lafortune. Introduction to Discrete Event Systems.
Kluwer Academic Publishers, 1999.

[Cordier and Grastien, 2007] M.-O. Cordier and A. Grastien.
Exploiting independence in a decentralised and incremen-
tal approach of diagnosis. In M. Veloso, editor,Twentieth

International Joint Conference on Artificial Intelligence
(IJCAI-07), pages 292–297. AAAI press, 2007.

[Fabreet al., 2005] E. Fabre, A. Benveniste, S. Haar, and
Cl. Jard. Distributed monitoring of concurrent and asyn-
chronous systems.Journal of Discrete Event Systems,
pages 33–84, 2005. special issue.

[Grastienet al., 2007] A. Grastien, Anbulagan, J. Rintanen,
and E. Kelareva. Diagnosis of discrete-event systems using
satisfiability algorithms. In R. Holte, editor,Nineteenth
National Conference on Artificial Intelligence (AAAI-07).
AAAI Press, 2007.

[Huang and Darwiche, 1996] C. Huang and A. Darwiche.
Inference in belief networks: A procedural guide.Interna-
tional Journal of Approximate Reasoning, 15(3):225–263,
1996.

[Jensen and Jensen, 1994] F.V. Jensen and F. Jensen. Opti-
mal junction trees. InProceedings of the Tenth Conference
on Uncertainty in Artificial Intelligence, Seattle, Washing-
ton, 1994.

[Kjrulff, 1990] U. Kjrulff. Triangulation of graphs - algo-
rithms giving small total state space, 1990.

[Lamperti and Zanella, 2003] G. Lamperti and M. Zanella.
Diagnosis of Active Systems. Kluwer Academic Publish-
ers, 2003.

[Pencolé and Cordier, 2005] Y. Pencolé and M.-O. Cordier.
A formal framework for the decentralised diagnosis of
large scale discrete event systems and its application to
telecommunication networks.Artificial Intelligence (AIJ),
164:121–170, 2005.

[Rintanen, 2007] J. Rintanen. Diagnosers and diagnosability
of succint transition systems. In M. Veloso, editor,Pro-
ceedings of the 20th Joint Conference on Artificial Intelli-
gence (AAAI-07). AAAI Press, 2007.

[Sampathet al., 1995] M. Sampath, R. Sengupta, S. Lafor-
tune, K. Sinnamohideen, and D. Teneketzis. Diagnosabil-
ity of discrete-event systems.IEEE Transactions on Auto-
matic Control, 40(9):1555–1575, 1995.

[Schumann and Huang, 2008] A. Schumann and J. Huang.
A scalable jointree algorithm for diagnosability. InPro-
ceedings of the 23rd AAAI Conference on Artificial Intelli-
gence (AAAI-08), 2008.

[Schumannet al., 2004] A. Schumann, Y. Pencolé, and
S. Thiébaux. Symbolic models for diagnosing discrete-
event systems. InSixteenth European Conference on Arti-
ficial Intelligence (ECAI’04), 2004.

[Schumannet al., 2007] A. Schumann, Y. Pencolé, and
S. Thiébaux. A spectrum of symbolic on-line diagnosis
approaches. In R. Holte, editor,Nineteenth National Con-
ference on Artificial Intelligence (AAAI-07). AAAI Press,
2007.

[Su and Wonham, 2005] R. Su and W. M. Wonham. Global
and local consistencies in distributed fault diagnosis for
discrete-event systems.Transactions on Automatic Con-
trol, 50(12):1923–1935, 2005.


